Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway

Abstract

The ancient reductive acetyl-CoA pathway is employed by acetogenic bacteria to form acetate from inorganic energy sources. Since the central pathway does not gain net ATP by substrate-level phosphorylation, chemolithoautotrophic growth relies on the additional formation of ATP via a chemiosmotic mechanism. Genome analyses indicated that some acetogens only have an energy-converting, ion-translocating hydrogenase (Ech) as a potential respiratory enzyme. Although the Ech-encoding genes are widely distributed in nature, the proposed function of Ech as an ion-translocating chemiosmotic coupling site has neither been demonstrated in bacteria nor has it been demonstrated that it can be the only energetic coupling sites in microorganisms that depend on a chemiosmotic mechanism for energy conservation. Here, we show that the Ech complex of the thermophilic acetogenic bacterium Thermoanaerobacter kivui is indeed a respiratory enzyme. Experiments with resting cells prepared from T. kivui cultures grown on carbon monoxide (CO) revealed CO oxidation coupled to H2 formation and the generation of a transmembrane electrochemical ion gradient ([Formula: see text]). Inverted membrane vesicles (IMVs) prepared from CO-grown cells also produced H2 and ATP from CO (via a loosely attached CO dehydrogenase) or a chemical reductant. Finally, we show that Ech activity led to the translocation of both H+ and Na+ across the membrane of the IMVs. The H+ gradient was then used by the ATP synthase for energy conservation. These data demonstrate that the energy-converting hydrogenase in concert with an ATP synthase may be the simplest form of respiration; it combines carbon dioxide fixation with the synthesis of ATP in an ancient pathway.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View