Skip to main content
eScholarship
Open Access Publications from the University of California

Theory of highly efficient multiexciton generation in type-II nanorods

  • Author(s): Eshet, H
  • Baer, R
  • Neuhauser, D
  • Rabani, E
  • et al.

Published Web Location

http://doi.org/10.1038/ncomms13178
No data is associated with this publication.
Abstract

© The Author(s) 2016. Multiexciton generation, by which more than a single electron-hole pair is generated on optical excitation, is a promising paradigm for pushing the efficiency of solar cells beyond the Shockley-Queisser limit of 31%. Utilizing this paradigm, however, requires the onset energy of multiexciton generation to be close to twice the band gap energy and the efficiency to increase rapidly above this onset. This challenge remains unattainable even using confined nanocrystals, nanorods or nanowires. Here, we show how both goals can be achieved in a nanorod heterostructure with type-II band offsets. Using pseudopotential atomistic calculation on a model type-II semiconductor heterostructure we predict the optimal conditions for controlling multiexciton generation efficiencies at twice the band gap energy. For a finite band offset, this requires a sharp interface along with a reduction of the exciton cooling and may enable a route for breaking the Shockley-Queisser limit.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item