Skip to main content
eScholarship
Open Access Publications from the University of California

Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A

  • Author(s): Wang, J
  • Bever, CRS
  • Majkova, Z
  • Dechant, JE
  • Yang, J
  • Gee, SJ
  • Xu, T
  • Hammock, BD
  • et al.

Published Web Location

https://doi.org/10.1021/ac5017437
Abstract

Tetrabromobisphenol A (TBBPA) is a ubiquitous flame retardant. A high-throughput immunoassay would allow for monitoring of human and environmental exposures as a part of risk assessment. Naturally occurring antibodies in camelids that are devoid of light chain, show great promise as an efficient tool in monitoring environmental contaminants, but they have been rarely used for small molecules. An alpaca was immunized with a TBBPA hapten coupled to thyroglobulin and a variable domain of heavy chain antibody (VHH) T3-15 highly selective for TBBPA was isolated from a phage displayed VHH library using heterologous coating antigens. Compared to the VHHs isolated using homologous antigens, VHH T3-15 had about a 10-fold improvement in sensitivity in an immunoassay. This assay, under the optimized conditions of 10% methanol in the assay buffer (pH 7.4), had an IC50for TBBPA of 0.40 ng mL-1and negligible cross reactivity (<0.1%) with other tested analogues. After heating the VHH at 90 °C for 90 min about 20% of the affinity for coating antigen T3-BSA remained. The recoveries of TBBPA from spiked soil and fetal bovine serum samples ranged from 90.3% to 110.7% by ELISA and agreed well with a liquid chromatography-tandem mass spectrometry method. We conclude the many advantages of VHH make them attractive for the development of immunoassays to small molecules. © 2014 American Chemical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View