Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

High density placental mesenchymal stromal cells provide neuronal preservation and improve motor function following in utero treatment of ovine myelomeningocele

Abstract

Purpose

The purpose of this study was to determine whether seeding density of placental mesenchymal stromal cells (PMSCs) on extracellular matrix (ECM) during in utero repair of myelomeningocele (MMC) affects motor function and neuronal preservation in the ovine model.

Methods

MMC defects were surgically created in 33 fetuses and repaired following randomization into four treatment groups: ECM only (n = 10), PMSC-ECM (42 K cells/cm2) (n = 8), PMSC-ECM (167 K cells/cm2) (n = 7), or PMSC-ECM (250-300 K cells/cm2) (n = 8). Motor function was evaluated using the Sheep Locomotor Rating Scale (SLR). Serial sections of the lumbar spinal cord were analyzed by measuring their cross-sectional areas which were then normalized to normal lambs. Large neurons (LN, diameter 30-70 μm) were counted manually and density calculated per mm2 gray matter.

Results

Lambs treated with PMSCs at any density had a higher median SLR score (15 [IQR 13.5-15]) than ECM alone (6.5 [IQR 4-12.75], p = 0.036). Cross-sectional areas of spinal cord and gray matter were highest in the PMSC-ECM (167 K/cm2) group (p = 0.002 and 0.006, respectively). LN density was highest in the greatest density PMSC-ECM (250-300 K/cm2) group (p = 0.045) which positively correlated with SLR score (r = 0.807, p < 0.0001).

Conclusions

Fetal repair of myelomeningocele with high density PMSC-ECM resulted in increased large neuron density, which strongly correlated with improved motor function.

Type of study

Basic science.

Level of evidence

N/A.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View