Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Shifting Baselines: Longitudinal Reductions in EEG Beta Band Power Characterize Resting Brain Activity with Intensive Meditation

Abstract

Objectives

A core assumption of meditation training is that cognitive capacities developed during formal practice will transfer to other contexts or activities as expertise develops over time. This implies that meditation training might influence domain-general neurocognitive systems, the spontaneous activity of which should be reflected in the dynamics of the resting brain. Previous research has demonstrated that 3 months of meditation training led to reductions in EEG beta band power during mindfulness of breathing practice. The current study extends these findings to ask whether concomitant shifts in power are observed during 2 min of eyes closed rest, when participants are not explicitly engaged in formal meditation.

Methods

Experienced meditation practitioners were randomly assigned to practice 3 months of focused attention meditation in a residential retreat, or to serve as waitlist controls. The waitlist controls later completed their own 3-month retreat. Permutation-based cluster analysis of 88-channel resting EEG data was used to test for spectral changes in spontaneous brain activity over the course of the retreats.

Results

Longitudinal reductions in EEG power in the beta frequency range were identified and replicated across the two independent training periods. Less robust reductions were also observed in the high alpha frequency range, and in individual peak alpha frequency. These changes closely mirror those previously observed during formal mindfulness of breathing meditation practice.

Conclusions

These findings suggest that the neurocognitive effects of meditation training can extend beyond the bounds of formal practice, influencing the spontaneous activity of the resting brain. Rather than serving as an invariant baseline, resting states might carry meaningful training-related effects, blurring the line between state and trait change.

Supplementary information

The online version contains supplementary material available at 10.1007/s12671-022-01974-9.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View