Skip to main content
Download PDF
- Main
Bleeding with iron deposition and vascular remodelling in subchondral cysts: A newly discovered feature unique to haemophilic arthropathy
Published Web Location
https://doi.org/10.1111/hae.14417Abstract
Introduction
Joint iron accumulation is the incendiary factor triggering osteochondral destruction, synovial hypertrophy, inflammation, and vascular remodelling in haemophilic arthropathy (HA). Hemosiderin depositions have been described in synovium and, more recently, in cartilage. Clinical observations also suggest hemosiderin accumulation in subchondral cysts, implying cyst bleeding.Aim
We explored associations between cystic iron accumulation, vascular remodelling and HA status to determine if cystic bleeding may contribute to HA progression.Methods
Thirty-six haemophilic joints (16 knees, 10 ankles, and 10 elbows; 31 adult patients with haemophilia A/B) were evaluated by magnetic resonance imaging (MRI) for subchondral cysts and hemosiderin. Cyst score (WORMS) and hemosiderin presence were compared between haemophilic and osteoarthritic knees, matched for the degree of arthritis (Kellgren-Lawrence score). Cystic iron accumulation, vascular remodelling and macrophage cell counts were also compared by immunohistochemistry in explanted joint tissues. In haemophilic knees, cyst number and extent of hemosiderin deposition were correlated with haemophilia joint health scores (HJHS).Results
Cystic hemosiderin was detected in 78% of haemophilic joints. Cyst score and presence of hemosiderin were significantly higher in haemophilic compared to osteoarthritic knees. Cyst score and presence of hemosiderin strongly correlated with HJHS. Moreover, iron deposition and vascular remodelling were significantly more pronounced within cysts in haemophilic compared to osteoarthritic knees, with similar total cell and macrophage count.Conclusion
These findings suggest the presence of subchondral bleeding in haemophilia, contributing to poor joint health outcomes. Observations of bleeding into osseous structures are novel and should inform investigations of new therapies.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%