Skip to main content
eScholarship
Open Access Publications from the University of California

Dynamics of Mechanosensitive Neural Stem Cell Differentiation

  • Author(s): Rammensee, S
  • Kang, MS
  • Georgiou, K
  • Kumar, S
  • Schaffer, DV
  • et al.

Published Web Location

http://dx.doi.org/10.1002/stem.2489
No data is associated with this publication.
Abstract

© 2016 AlphaMed Press Stem cell differentiation can be highly sensitive to mechanical inputs from the extracellular matrix (ECM). Identifying temporal windows during which lineage commitment responds to ECM stiffness, and the signals that mediate these decisions, would advance both mechanistic insights and translational efforts. To address these questions, we investigate adult neural stem cell (NSC) fate commitment using an oligonucleotide-crosslinked ECM platform that for the first time offers dynamic and reversible control of stiffness. “Stiffness pulse” studies in which the ECM was transiently or permanently softened or stiffened at specified initiation times and durations pinpoint a 24-hour window in which ECM stiffness maximally impacts neurogenic commitment. Overexpression of the transcriptional coactivator Yes-associated protein (YAP) within this window suppressed neurogenesis, and silencing YAP enhanced it. Moreover, ablating YAP-β-catenin interaction rescued neurogenesis. This work reveals that ECM stiffness dictates NSC lineage commitment by signaling via a YAP and β-catenin interaction during a defined temporal window. Stem Cells 2017;35:497–506.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item