Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Phonatory effects of type I thyroplasty implant shape and depth of medialization in unilateral vocal fold paralysis

Abstract

Objectives/hypothesis

Medialization thyroplasty (MT) is commonly used to treat glottic insufficiency. In this study, we investigated the phonatory effects of MT implant medialization depth and medial surface shape.

Methods

Recurrent laryngeal nerve (RLN) and vagal paralysis were simulated in an in vivo canine. A type 1 MT was performed using a silicone elastomer implant with variable medialization depths and medial surface shapes: rectangular, V-shaped, divergent, and convergent. The effects on phonation onset flow/pressure relationships and acoustics were measured.

Results

Increasing depth of medialization led to improvements in fundamental frequency (F0) range and normalization of the slope of pressure/flow relationship toward baseline activation conditions. The effects of implant medial shape also depended on depth of medialization. Outcome measures were similar among the implants at smaller medialization depths. With large medialization depths and vagal paralysis conditions, the divergent implant maintained pressure/flow relationship closer to baseline. The vagal paralysis conditions also demonstrated decreased fundamental frequency range and worse flow/pressure relationship compared to RLN paralysis.

Conclusions

The depth and medial shape of a medialization laryngoplasty (ML) implant significantly affect both the F0 range and aerodynamic power required for phonation. These effects become more notable with increasing depth of medialization. The study also illustrates that ML is less effective in vagal paralysis compared to RLN paralysis.

Level of evidence

N/A.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View