Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Visualizing coherent vibrational motion in the molecular iodine B3Π0+u state using ultrafast XUV transient-absorption spectroscopy

Abstract

Attosecond probing of core-level electronic transitions in molecules provides a sensitive tool for real-time observation of chemical dynamics. Here, we employ ultrafast extreme-ultraviolet (XUV) transient-absorption spectroscopy to investigate the excited state electronic and nuclear dynamics in a prototype molecule, I2. A few-femtosecond visible pump pulse is employed to excite the I2 molecule and an attosecond XUV pulse is used to probe the dynamics through iodine-4d core-to-valence transitions. A highly extended vibrational wave packet (ν′=10-50,νmax′=25) is prepared by one-photon absorption in the valence excited B3Π0+u state of I2 and its motion is directly mapped due to the strong shift of the XUV core-level transition with internuclear separation. Through the imaging of this vibrational motion, we directly reconstruct the transition energy between the valence and the core-excited states as a function of internuclear distance. Besides single-photon dynamics, distinct direct dissociation pathways arising from two-photon pump absorption are also revealed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View