Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Synthesis, characterization and reactivity of a Mn(III)-hydroxido complex as a biomimetic model for lipoxygenase.

Abstract

Manganese hydroxido (Mn-OH) complexes supported by a tripodal N,N,N″-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido) ([poat]3-) ligand have been synthesized and characterized by spectroscopic techniques including UV-vis and electron paramagnetic resonance (EPR) spectroscopies. X-ray diffraction (XRD) methods were used to confirm the solid-state molecular structures of {Na2[MnIIpoat(OH)]}2 and {Na[MnIIIpoat(OH)]}2 as clusters that are linked by the electrostatic interactions between the sodium counterions and the oxygen atom of the ligated hydroxido unit and the phosphinic (P=O) amide groups of [poat]3-. Both clusters feature two independent monoanionic fragments in which each contains a trigonal bipyramidal Mn center that is comprised of three equatorial deprotonated amide nitrogen atoms, an apical tertiary amine, and an axial hydroxido ligand. XRD analyses of {Na[MnIIIpoat(OH)]}2 also showed an intramolecular hydrogen bonding interaction between the MnIII-OH unit and P=O group of [poat]3-. Crystalline {Na[MnIIIpoat(OH)]}2 remains as clusters with Na+---O interactions in solution and is unreactive toward external substrates. However, conductivity studies indicated that [MnIIIpoat(OH)]- generated in situ is monomeric and reactivity studies found that it is capable of cleaving C-H bonds, illustrating the importance of solution-phase speciation and its direct effect on chemical reactivity. Synopsis: Manganese-hydroxido complexes were synthesized to study the influence of H-bonds in the secondary coordination sphere and their effects on the oxidative cleavage of substrates containing C-H bonds.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.