Skip to main content
eScholarship
Open Access Publications from the University of California

An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier.

  • Author(s): Breslow, David K
  • Koslover, Elena F
  • Seydel, Federica
  • Spakowitz, Andrew J
  • Nachury, Maxence V
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798247/
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item