Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Dopant Concentration Controls Quasi-Static Electrostrictive Strain Response of Ceria Ceramics

Abstract

Electromechanically active ceramic materials, piezoelectrics and electrostrictors, provide the backbone of a variety of consumer technologies. Gd- and Sm-doped ceria are ion conducting ceramics, finding application in fuel cells, oxygen sensors, and, potentially, as memristor materials. While optimal design of ceria-based devices requires a thorough understanding of their mechanical and electromechanical properties, reports of systematic study of the effect of dopant concentration on the electromechanical behavior of ceria-based ceramics are lacking. Here we report the longitudinal electrostriction strain coefficient (M33) of dense RExCe1-xO2-x/2 (x ≤ 0.25) ceramic pellets, where RE = Gd or Sm, measured under ambient conditions as a function of dopant concentration within the frequency range f = 0.15-350 Hz and electric field amplitude E ≤ 0.5 MV/m. For >100 Hz, all ceramic pellets tested, independent of dopant concentration, exhibit longitudinal electrostriction strain coefficient with magnitude on the order of 10-18 m2/V2. The quasi-static (f < 1 Hz) electrostriction strain coefficient for undoped ceria is comparable in magnitude, while introducing 5 mol % Gd or 5 mol % Sm produces an increase in M33 by up to 2 orders of magnitude. For x ≤ 0.1 (Gd)-0.15 (Sm), the Debye-type relaxation time constant (τ) is in the range 60-300 ms. The inverse relationship between dopant concentration and quasi-static electrostrictive strain parallels the anelasticity and ionic conductivity of Gd- and Sm-doped ceria ceramics, indicating that electrostriction is partially governed by ordering of vacancies and changes in local symmetry.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View