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HEGY test under seasonal heterogeneity

Nan Zou∗ and Dimitris Politis

Department of Mathematics, University of California-San Diego,
La Jolla, CA 92093

Abstract

Both seasonal unit roots and seasonal heterogeneity are common in seasonal data. When
testing seasonal unit roots under seasonal heterogeneity, it is unclear if we can apply tests
designed for seasonal homogeneous settings, for example the non-periodic HEGY test (Hylleberg,
Engle, Granger, and Yoo, 1990). In this paper, the validity of both augmented HEGY test and
unaugmented HEGY test is analyzed. The asymptotic null distributions of the statistics testing
the single roots at 1 or −1 turn out standard and pivotal, but the asymptotic null distributions
of the statistics testing any coexistence of roots at 1, −1, i, or −i are non-standard, non-
pivotal, and not directly pivotable. Therefore, the HEGY tests are not directly applicable to
the joint tests for the concurrence of the roots. As a remedy, we bootstrap augmented HEGY
with seasonal independent and identically distributed (iid) bootstrap, and unaugmented HEGY
with seasonal block bootstrap. The consistency of both bootstrap procedures is established.
Simulations indicate that for roots at 1 and −1 seasonal iid bootstrap augmented HEGY test
prevails, but for roots at ±i seasonal block bootstrap unaugmented HEGY test enjoys better
performance.

Keywords: Seasonality, Unit root, AR sieve bootstrap, Block bootstrap, Functional central limit
theorem.

1 Introduction

Seasonal unit roots and seasonal heterogeneity often coexist in seasonal data, hence the importance
to design seasonal unit root tests that allow for seasonal heterogeneity. In particular, given the
following heterogeneous quarterly data {Y4t+s : t = 1, ..., T , s = −3, ..., 0} (see also Ghysels and
Osborn, 2001, and Franses and Paap, 2004), generated by

αs(L)Y4t+s = V4t+s. (1.1)

Suppose Vt = (V4t−3, ..., V4t)
′ is a weakly stationary vector-valued process. Suppose for all s =

−3, ..., 0, the roots of αs(L) are on or outside the unit circle. If for some s, the roots of αs(L) are all
outside the unit circle, suppose the data are a stretch of a process {Y4t+s, t = 1, 2, ..., s = −3, ..., 0};
otherwise, suppose Y−3 = Y−2 = Y−1 = Y0 = 0, all αs(L) share the same set of roots on the
unit circle, and this set of roots on the unit circle is a subset of {1,−1,±i}. We aim to test if
all αs(L) share roots at 1, −1, or ±i. To address this task, Franses (1994) and Boswijk, Franses,
and Haldrup (1997) limit their scope to finite order seasonal AutoRegressive (AR) data, and apply
Johansen’s method (1988) to seasonal unit root tests in seasonal heterogeneous setting. However,
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their approaches cannot directly test the existence of a certain root without first checking the number
of seasonal unit roots. Also working on finite order seasonal AR data, Ghysels, Hall, and Lee (1996)
enable the direct test for the existence of a certain root. However, their simulations show that their
procedure is less powerful than the non-periodic augmented HEGY test.

Does non-periodic HEGY test work in the seasonally heterogeneous setting? To the best of our
knowledge, no literature has offered a satisfactory answer. Burridge and Taylor (2001a) analyze the
behavior of augmented HEGY test when only seasonal heteroscadasticity exists; Castro and Osborn
(2008) put augmented HEGY test in the periodic integrated model, a model related but mutually
exclusive with model (1.1). No literature has ever touched the behavior of unaugmented HEGY test
proposed by Breitung and Franses (1998), the important semi-parametric version of HEGY test.
Since unaugmented HEGY test does not assume the noise having an AR structure, it may suit our
non-parametric noise in (1.1) better.

To check the legitimacy of non-periodic HEGY tests in the seasonally heterogeneous setting
(1.1), this paper derives the asymptotic null distributions of the unaugmented HEGY test and the
asymptotic null distributions of the augmented HEGY test whose order of lags goes to infinity. It
turns out that, the asymptotic null distributions of the statistics testing the single roots at 1 or −1
are standard. More specifically, for each single root at 1 or −1, the asymptotic null distributions of
the augmented HEGY statistics are identical to that of Augmented Dickey-Fuller (ADF) test (Dickey
and Fuller, 1979), and the asymptotic null distributions of the unaugmented HEGY statistics are
identical to those of Phillips-Perron test (Phillips and Perron, 1988). However, the asymptotic null
distributions of the statistics testing any combination of roots at 1, −1, i, or −i depend on the
seasonal heterogeneity parameters, and are non-standard, non-pivotal, and not directly pivotable.
Therefore, when seasonal heterogeneity exists, both augmented HEGY and unaugmented HEGY
tests can be straightforwardly used to test single roots at 1 or −1, but cannot be directly applied to
the joint tests for the coexistence of any roots.

As a remedy, this paper proposes the application of bootstrap. In general, bootstrap’s advantages
are two fold. Firstly, bootstrap helps when the asymptotic distributions of the statistics of interest
cannot be found or simulated. Secondly, even when the asymptotic distributions can be found and
simulated, bootstrap method may enjoy second order efficiency. For the aforementioned problem,
bootstrap therefore serves as an appealing solution. Firstly, it is hard to estimate the seasonal
heterogeneity parameters in the asymptotic null distribution, and to simulate the asymptotic null
distribution. Secondly, bootstrap seasonal unit root test may inherit the good second order efficiency
(Park, 2003) of bootstrap non-seasonal unit root test.

The only methodological literature we find on bootstrapping HEGY test is Burridge and Taylor
(2004). Their paper centers on seasonal heteroscadasticity, designs a bootstrap-aided augmented
HEGY test, reports its simulation result, but does not give theoretical justification for their test.
Indeed, from the discussion of the present paper, it will be seen (Remark 3.8) that the bootstrap
approach of Burridge and Taylor (2004) is valid when nothing but seasonal variance varies, but is
invalid under the general seasonal heterogeneous setting (1.1).

To cater to the general heterogeneous setting (1.1), this paper designs new bootstrap tests,
namely 1) seasonal iid bootstrap augmented HEGY test, and 2) seasonal block bootstrap unaug-
mented HEGY test. To generate bootstrap replicates, the first test get residuals from season-
by-season augmented HEGY regressions, and then applies seasonal iid bootstrap to the whitened
regression errors. On the other hand, the second test starts with season-by-season unaugmented
HEGY regressions, and then handle the correlated errors with seasonal block bootstrap proposed
by Dudek, Lekow, Paparoditis, and Politis (2014). Our paper establishes the Functional Central
Limit Theory (FCLT) for both bootstrap tests. Based on the FCLT, the validity for both boot-
strap approaches is proven. To the best of our knowledge, this result gives the first justification for
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bootstrapping HEGY tests under (1.1).
This paper proceeds as follows. Section 2 formalizes the settings, presents the assumptions, and

states the hypotheses. Section 3 gives the asymptotic null distributions of the augmented HEGY
test statistics, details the algorithm of seasonal iid bootstrap augmented HEGY test, and establishes
its consistency. Section 4 presents the asymptotic null distributions of the unaugmented HEGY test
statistics, specifies the algorithm of seasonal block bootstrap unaugmented HEGY test, and proves
its consistency. Section 5 compares the simulation performance of the two aforementioned tests.
Appendix includes the proofs of all theorems.

2 Settings

Recall the quarterly data {Y4t+s : t = 1, ..., T , s = −3, ..., 0} generated by the seasonal AR model,

αs(L)Y4t+s = V4t+s, (2.1)

where LY4t+s = Y4t+s−1, αs(L) = 1−
∑4
j=1 αj,sL

j . Let V4t+s and αj,s be the regression errors and
regression coefficients of (2.1), respectively. More specifically, V4t+s is the distance between Y4t+s
and the vector space generated by Y4t+s−j , j = 1, ..., 4, and αj,s is the coefficient of the projection
of V4t+s on the aforementioned vector space. Let εt = (ε4t−3, ..., ε4t)

′, Bεt = εt−1. Denote by AR(p)
a AutoRegressive process with order p, by VMA(∞) a Vector Moving Average process with infinite
moving average order, and by VARMA(p, q) a Vector AutoRegressive Moving Average process with
autoregressive order p and moving average order q. Let Re(z) be the real part of complex number
z. Let bxc be the largest integer smaller or equal to real number x, and dxe be the smallest integer
larger or equal to x.

Assumption 1.A. Assume
Vt = Θ(B)εt

where Θ(B) =
∑∞
i=0 ΘiB

i; the (j, k) entry of Θi, denoted by Θ
(j,k)
i , satisfies

∑∞
i=1 i|Θi|(j,k) < ∞

for all j and k; the determinant of Θ(z), as a function of z, has all roots outside the unit circle; Θ0

is a lower diagonal matrix whose diagonal entries equal 1; εt is a vector-valued white noise process
with mean zero and covariance matrix Ω; and Ω is diagonal.

Assumption 1.A assumes that {Vt} is VMA(∞) with respect to white noise innovation. This is
equivalent to the assumption that {Vt} is a weakly stationary process with no deterministic part in
the multivariate Wold decomposition. The assumptions on Θ0 and the determinant of Θ(z) ensure
the causality and the invertibility of {Vt} and the identifiability of Ω.

Assumption 1.B. Assume
Vt = Ψ(B)−1Λ(B) ≡ Θ(B)εt

where Ψ(B) =
∑p
i=0 ΨiB

i; Λ(B) =
∑q
i=0 ΛiB

i; determinants of Ψ(z) and Λ(z) have all roots
outside the unit circle; Ψ0 is the identity matrix; Λ0 is a lower diagonal matrix whose diagonal
entries equal 1; εt is a vector-valued white noise process with mean zero and covariance matrix Ω;
and Ω is diagonal.

Assumption 1.B restricts {Vt} to be VARMA(p, q) with respect to white noise innovation. Com-
pared to the VMA(∞) model in Assumption 1.A, VARMA(p, q)’s main restraint is its exponentially
decaying autocovariance. Again, the assumptions on Ψ0, Λ0 and the determinant of Ψ(z) and Λ(z)
in Assumption 1.B ensure the causality and the invertibility of {Vt} and the identifiablity of Ω.

At this stage {εt} is only assumed to be a white noise sequence of random vectors. In fact, {εt}
also need to be weakly dependent.
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Assumption 2.A. (i) {εt} is a fourth-order stationary martingale difference sequence with finite
4 + δ moment for some δ > 0. (ii) ∃K > 0, ∀ i, j, k, and l,

∑∞
h=−∞ |Cov(εiεj , εk−hεl−h)| < K.

Assumption 2.B. (i) {εt} is a strictly stationary strong mixing sequence with finite 4 + δ moment
for some δ > 0. (ii) {εt}’s strong mixing coefficient a(k) satisfies

∑∞
k=1 k(a(k))δ/(4+δ) <∞.

Notice the higher moment {εt} has, the weaker assumption we require on the strong mixing
coefficient of {εt} in Assumption 2.B. The strong mixing condition in Assumption 2.B actually
guarantees (ii) of Assumption 2.A (see Lemma 4).

Hypotheses. We tackle the following set of null hypotheses. The alternative hypotheses are the
complement of the null hypotheses.

H1
0 : αs(1) = 0, ∀s = −3, ..., 0.

H2
0 : αs(−1) = 0, ∀s = −3, ..., 0.

H1,2
0 : αs(1) = αs(−1) = 0, ∀s = −3, ..., 0.

H3,4
0 : αs(i) = αs(−i) = 0, ∀s = −3, ..., 0.

H1,3,4
0 : αs(1) = αs(i) = αs(−i) = 0, ∀s = −3, ..., 0.

H2,3,4
0 : αs(−1) = αs(i) = αs(−i) = 0, ∀s = −3, ..., 0.

H1,2,3,4
0 : αs(1) = αs(−1) = αs(i) = αs(−i) = 0, ∀s = −3, ..., 0.

Indeed, the alternative hypotheses can be written as one-sided. Recall we suppose that for all
s = −3, ..., 0, the roots of αs(L) are either on or outside the unit circle. Since αs(0) = 1, by the
intermediate value theorem, αs(1) 6= 0 implies αs(1) > 0, αs(−1) 6= 0 implies αs(−1) > 0, and
αs(i) 6= 0 implies Re(αs(i)) > 0. To further analyze the roots of αs(L), HEGY (Hylleberg, Engle,
Granger, and Yoo, 1990) propose the partial fraction decomposition

αs(L)

1− L4
= λ0,s +

λ1,s
1− L

+
λ2,s

1 + L
+
λ3,sL+ λ4,s

1 + L2
;

thus
αs(L) = λ0,s(1− L4)

+ λ1,s(1 + L)(1 + L2) + λ2,s(1− L)(1 + L2)

+ λ3,s(1− L)(1 + L)L+ λ4,s(1− L)(1 + L).

(2.2)

Substituting (2.2) into (2.1), we get

(1− L4)Y4t+s =

4∑
j=1

πj,sYj,4t+s−1 + V4t+s, (2.3)

where
Y1,4t+s = (1 + L)(1 + L2)Y4t+s, Y2,4t+s = −(1− L)(1 + L2)Y4t+s,

Y3,4t+s = −L(1− L2)Y4t+s, Y4,4t+s = −(1− L2)Y4t+s,

π1,s = −λ1,s, π2,s = −λ2,s,
π3,s = −λ4,s, π4,s = λ3,s,

(2.4)

Indeed, πj,s relates to the root of αs(z), for example, αs(1) = 4λ1,s; hence the proposition below.
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Proposition 2.1 (HEGY, 1990).

αs(1) = 0 ⇐⇒ π1,s = 0, αs(1) 6= 0 ⇐⇒ π1,s < 0,

αs(−1) = 0 ⇐⇒ π2,s = 0, αs(−1) 6= 0 ⇐⇒ π2,s < 0,

αs(i) = 0 ⇐⇒ αs(−i) = 0 ⇐⇒ π3,s = π4,s = 0, αs(i) 6= 0 ⇐⇒ αs(−i) 6= 0 ⇐⇒ π3,s < 0.

By Proposition 2.1, the test for the null hypotheses can be carried on by checking the corre-
sponding πj,s. Further, πj,s can be estimated by Ordinary Least Squares (OLS). Unfortunately, the
OLS cannot be readily applied season by season on the regression (2.3) (see Ghysels and Osborn,
2001, p. 158). On the other hand, it is unsure if the OLS can be implemented well on a non-periodic
regression equation, for example, (3.2) and (4.1).

When we run non-periodic regressions in succeeding sections, the seasonally heterogeneous se-
quence {V4t+s} is fitted in seasonal homogeneous AR models. Consider fitting {V4t+s} in the AR(1)

model Vt = φVt−1 + et, where φ is defined such that the OLS estimator φ̂ converges in probability
to φ. Given this definition, it can be shown that φ = γ̃(1)/γ̃(0), where

γ̃(h) =
1

4

0∑
s=−3

E[V4t+sV4t+s−h]. (2.5)

Now let {Ṽt} be a weakly stationary sequence with mean zero and autocovariance function γ̃. Such
{Ṽt} exists because γ̃ is a positive semi-definite function. Fitting {Ṽt} in the AR(1) model Ṽt =
φ̃Ṽt−1 + et, we get φ̃ = γ̃(1)/γ̃(0) = φ. This indicates that when fitting the seasonally heterogeneous
sequence {V4t+s} in AR models, the AR coefficients defined as the limits of the OLS estimators
are identical to the AR coefficients of the seasonally homogeneous sequence {Ṽt}. We call {Ṽt} a
misspecified constant parameter representation (see also Osborn, 1991) of {V4t+s}, and will refer to
this concept in later sections.

3 Seasonal iid bootstrap Augmented HEGY Test

3.1 Augmented HEGY test

In seasonally homogeneous setting

α(L)Yt = Vt, t = 1 + k, ..., 4T, (3.1)

where α(L) =
∑4
i=0 αiL

i, the augmented HEGY test detailed below copes with the roots of α(L)
at 1, −1, and ±i. By calculations similar to (2.2), HEGY (1990) get

(1− L4)Yt =

4∑
j=1

πjYj,t−1 +

k∑
i=1

φi(1− L4)Yt−i + et, (3.2)

where augmentations (1 − L4)Yt−i, i = 1, 2, ..., k, pre-whiten the time series (1 − L4)Yt up to an
order of k. As the sample size T → ∞, let k → ∞, so that the residual {et} is asymptotically
uncorrelated. Let π̂i be the OLS estimator of πi, ti be the t-statistics corresponding to π̂i, and F34

be the F-statistic corresponding to π̂3 and π̂4. Other F-statistics F12, F124, F134, and F1234 can be
defined similarly. In seasonally homogeneous configuration, HEGY (1990) proposes to reject H1

0 if
π̂1 is too small, reject H2

0 if π̂2 is too small, reject H3,4
0 if F34 is too large, and reject other composite

hypotheses if their corresponding F-statistics are too large. (In proposition 3.1 we will show this
rejection rule works for seasonally heterogeneous data {Y4t+s}.)
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3.2 Real World Asymptotics

Now we apply the augmented HEGY test to seasonally heterogeneous processes. Namely, we run
regression equation (3.2) with {Y4t+s} generated by (2.1). Our results show that when testing
roots at 1 or −1 individually, the t-statistics t1, t2, and the F-statistics have standard and pivotal
asymptotic distributions. On the other hand, when testing joint roots at 1 and −1, and when
testing hypotheses that involve roots at ±i, the asymptotic distributions of the t-statistics and the
F-statistics are non-standard, non-pivotal, and not directly pivotable.

Theorem 3.1. Assume that Assumption 1.B and one of the Assumption 2.A or 2.B hold. Further,
assume T → ∞, k = kT → ∞, k = o(T 1/3), and ck > T 1/α for some c > 0, α > 0. Then under
H1,2,3,4

0 , the asymptotic distributions of π̂i, ti, i = 1, 2, and F-statistics are given by

tj ⇒
∫ 1

0
Wj(r)dWj(r)√∫ 1

0
W 2
j (r)dr

≡ ξj , j=1,2,

F12 ⇒
1

2
(ξ21 + ξ22), F34 ⇒

1

2
(ξ23 + ξ24),

F134 ⇒
1

3
(ξ21 + ξ23 + ξ24), F234 ⇒

1

3
(ξ22 + ξ23 + ξ24),

F1234 ⇒
1

4
(ξ21 + ξ22 + ξ23 + ξ24), with

ξ3 =
λ23

∫ 1

0
W3(r)dW3(r) + λ24

∫ 1

0
W4(r)dW4(r)√

(λ23 + λ24)( 1
2λ

2
3

∫ 1

0
W 2

3 (r)dr + 1
2λ

2
4

∫ 1

0
W 2

4 (r)dr)
,

ξ4 =
λ3λ4(

∫ 1

0
W3(r)dW4(r)−

∫ 1

0
W4(r)dW3(r))√

(λ23 + λ24)( 1
2λ

2
3

∫ 1

0
W 2

3 (r)dr + 1
2λ

2
4

∫ 1

0
W 2

4 (r)dr)
,

where c1 = (1, 1, 1, 1)′, c2 = (1,−1, 1,−1)′, c3 = (0,−1, 0, 1)′, and c4 = (−1, 0, 1, 0)′, λi =√
c′iΘ(1)ΩΘ(1)′ci/4, Wi = c′iΘ(1)Ω1/2W /2λi, W (t) = (W1(t),W2(t),W3(t),W4(t))′ is a four-

dimensional standard Brownian motion.

Remark 3.1. Notice the Theorem 3.1 allows the simultaneous increase of T and k when deriving
the asymptotic distributions of double-indexed sequences of random variables. On the other hand,
Galbraith and Zinde-Walsh (1999) and Castro and Osborn (2008, 2011) firstly fix k and let T →∞,
and then let k →∞. Indeed, their limiting results based the aforementioned two-step convergences
of k and n cannot imply the limiting results when T →∞ and k →∞ simultaneously. (For example,
see Billingsley (1999), Theorem 3.2).

Remark 3.2. The asymptotic distributions presented in the Theorem 3.1 degenerate to the distri-
butions in Burridge and Taylor (2001b) and Castro, Osborn and Taylor (2012) when {V4t+s} is a
seasonally homogeneous sequence with homoscedastic noise, and to the distributions in Burridge
and Taylor (2001a) when {V4t+s} is a seasonally homogeneous finite-order AR sequence with het-
eroscedastic noise.

Remark 3.3. Notice Wi’s are standard Brownian motions. When {V4t+s} is seasonally homogeneous
(Burridge and Taylor, 2001b, Castro et al., 2012), Wi’s are independent, so are the asymptotic
distributions of t1 and t2. On the other hand, when {V4t+s} has seasonal heterogeneity, Wi’s are in
general independent, so t1 and t2 are in general dependent, even asymptotically. Hence, when testing
H1,2

0 , it is problematic to test H1
0 and H2

0 separately and calculate the level of the test with the
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independence of t1 and t2 in mind. Instead, the test of H1,2
0 should be handled with F12. Further,

because of the dependence of t1 and t2, the asymptotic distribution of F12 under heterogeneity is
different from its counterpart when {V4t+s} is seasonally homogeneous. Hence, the non-periodic
augmented HEGY test cannot be directly applied to test H1,2

0 .

Remark 3.4. When {V4t+s} is only seasonally heteroscedastic (Burridge and Taylor, 2001a), Θ(1)
does not occur in the asymptotic distributions of the F-statistics. On the other hand, when {V4t+s}
has generic seasonal heterogeneity, Θ(1) impacts firstly the correlation between Brownian motions
W3 and W4, and secondly the weights λ3 and λ4.

Remark 3.5. As Burridge and Taylor (2001a) point out, the dependence of the asymptotic distri-
butions on weights λ3 and λ4 can be expected. Indeed, Y3,4t+s = Y4,4t+s−1 is the partial sum of
{−V4t+s−1, V4t+s−3, ...}, while Y3,4t+s = Y4,4t+s−1 is the partial sum of {−V4t+s, V4t+s−2, ...}. Since
these two partial sums differ in their variances, both

∑
Y3,4t+s and

∑
Y4,4t+s involve two different

weights λ3 and λ4.

Remark 3.6. Theorem 3.1 presents the asymptotics when {Yt} has all roots at 1, −1, and ±i.
When {Y4t+s} has some but not all roots at 1, −1, and ±i, we let Ut = (1 − L4)Yt, U =
(U4t−3, U4t−2, U4t−1, U4t)

′, and calculate H(z) such that Ut = H(B)εt. The asymptotic distri-
butions can be expressed with respective to on H(z) and end up identical with those given in
Theorem 3.1, where {Y4t+s} has all roots.

While the preceding results give the asymptotic behaviors of the testing statistics under the null
hypotheses, the proposition below describes the asymptotics under the alternative hypotheses, and
justifies the rejection rules in section 3.1 when applying HEGY test to seasonally heterogeneous
processes.

Proposition 3.1. When {Y4t+s} does not have roots at 1, −1, or ±i, the OLS estimates π̂j in
(3.2), j = 1, 2, 3, respectively, converge in probability to negative values.

Proof. We take the root at 1 as an example. Suppose {Y4t+s} has no root at 1, namely π1,s < 0 for
some s. If {Y4t+s} has other nuisance root (for example, −1) then by the asymptotic orthogonality
of regression equation (3.2), the corresponding predictor (for example, Y2,t−1) of the nuisance root
(for example, −1) can be excluded from (3.2) without changing the asymptotics of π̂1. All remaining
predictors in (3.2) contain a filter (for example, 1+L) that filter out the nuisance root (for example,
−1). Hence we can assume without loss of generality that {Y4t+s} has no root at 1, −1, or ±i. Notice
that (1.1) can be written as A(B)Yt = Vt, or |A(B)|Yt = A∗Vt ≡ V̇t, or |A(B)|Y4t+s = V̇4t+s,
where A∗(B) is the adjugate matrix of A(B). Notice {Y4t+s} in |A(B)|Y4t+s = V̇4t+s has seasonally
homogeneous AR coefficients. If {Y4t+s} has no root at 1, −1, or ±i, then |A(z)| has its roots outside
the unit circle. Then π̂1 converges (Berk, 1974) to a negative value (see Proposition 2.1).

3.3 Seasonal iid bootstrap algorithm

To accommodate the non-standard, non-pivotal asymptotic null distributions of the augmented
HEGY test statistics, we propose the application of bootstrap. In particular, the bootstrap replica-
tions are created as follows. Firstly, we pre-whiten the data season by season to obtain uncorrelated
noises. Although these noises are uncorrelated, they are not white due to seasonally heteroscadastic-
ity. Hence secondly we resample season by season in order to generate bootstrapped noise. Finally,
we post-color the bootstrapped noise. The detailed algorithm of this seasonal iid bootstrap aug-
mented HEGY test is given below.
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Algorithm 3.1. Step 1: calculate the t-statistics t1, t2, and the F-statistics F from the non-periodic
augmented HEGY test regression

(1− L4)Yt =

4∑
j=1

π̂jYj,t−1 +

k∑
i=1

φ̂i(1− L4)Yt−i + et;

Step 2: record OLS estimators π̂j,s, φ̂i,s and residuals ε̂4t+s from the season-by-season regression

(1− L4)Y4t+s =

4∑
j=1

π̂j,sYj,4t+s−1 +

k∑
i=1

φ̂i,s(1− L4)Y4t+s−i + ε̂4t+s;

Step 3: let ε̌4t+s = ε̂4t+s− 1
T

∑T
t=bk/4c+1 ε̂4t+s. Store demeaned residuals {ε̌4t+s} of the four seasons

separately, then independently draw four iid samples from each of their empirical distributions, and
then combine these four samples into the vector {ε?4t+s}, with their seasonal orders preserved;

Step 4: set all π̂j,s corresponding to the null hypothesis to be zero. For example, set π3,s = π4,s = 0
for all s when testing roots at ±i. Let {Y ?t } be generated by

(1− L4)Y ?4t+s =

4∑
j=1

π̂j,sY
?
j,4t+s−1 +

k∑
i=1

φ̂i,s(1− L4)Y ?4t+s−i + ε?4t+s;

Step 5: get t-statistics t?1, t?2, and the F-statistics F ∗ from the regression

(1− L4)Y ?t =

4∑
j=1

π̂?jYj,t−1 +

k∑
i=1

φ̂?i (1− L4)Y ?t−i + e?t ;

Step 6: run step 3, 4, and 5 for B times to get B sets of statistics t?1, t?2, and the bootstrapped F-
statistics F ?. Count separately the numbers of t?1, t?2 and F ? than which t1, t2, and the F-statistics
F are more extreme. If these numbers are higher than B(1− level), then we consider t1, t2, and the
F-statistics F extreme, and reject the corresponding hypotheses.

Remark 3.7. It seems also reasonable to keep steps 1, 2, 3, 5, and 6 of the Algorithm 3.1, but change
the generation of {Y ?t } in step 4 to

(1− L4)Y ?4t+s =

k∑
i=1

φ̂i,s(1− L4)Y ?4t+s−i + ε?4t+s. (3.3)

This new algorithm is in fact theoretically invalid for the tests of any coexistence of roots (see
Remark 3.3, 3.4, and 3.6), but it is valid for individual tests of roots at 1 or −1, due to the pivotal
asymptotic distributions of t1 and t2 in Theorem 3.1.

Remark 3.8. If we keep steps 1, 3, 5, and 6 of Algorithm 3.1, but run regression equations with
seasonally homogeneous coefficients π̂j and φ̂i in steps 2 and 4, then this algorithm is identical with
Burridge and Taylor (2004). However, this algorithm cannot in step 2 fully pre-whiten the time
series, and it leaves the regression error {et} serially correlated. When {et} is bootstrapped by
seasonal iid bootstrap, this serial correlation structure is ruined. As a result, (1−L4)Y ?t differs from
(1−L4)Yt in its correlation structure, in particular Θ(1). Hence, the conditional distributions of the
bootstrapped F-statistics, for example F ?34, differ from the distribution of the original F-statistics,
for example F34 (see Remark 3.3 and 3.4).
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3.4 Seasonal iid bootstrap asymptotics

Now we walk toward the justification of the seasonal iid bootstrap augmented HEGY test (Algorithm
3.1). Since the derivation of the real-world asymptotic distributions in Theorem 3.1 calls on FCLT
(see Lemma 1), the justification of bootstrap approach also requires FCLT in the bootstrap world.
From now on, let P ◦, E◦, V ar◦, Std◦, Cov◦ be the probability, expectation, variance, standard
deviation, and covariance, respectively, conditional on our data {Y4t+s}.

Theorem 3.2. Suppose the assumptions in Theorem 3.1 hold. Let S?T (u1, u2, u3, u4)

=
1√
4T

(

b4Tu1c∑
t=1

ε?t /σ
?
1 ,

b4Tu2c∑
t=1

(−1)tε?t /σ
?
2 ,

b4Tu3c∑
t=1

√
2 sin(

πt

2
)ε?t /σ

?
3 ,

b4Tu4c∑
t=1

√
2 cos(

πt

2
)ε?t /σ

?
4),

where

σ?1 = Std◦[
1√
4T

4T∑
t=1

ε?t ], σ?2 = Std◦[
1√
4T

4T∑
t=1

(−1)tε?t ],

σ?3 = Std◦[
1√
4T

4T∑
t=1

√
2 sin(

πt

2
)ε?t ], σ?4 = Std◦[

1√
4T

4T∑
t=1

√
2 cos(

πt

2
)ε?t ].

Then, no matter which hypothesis is true, S?T ⇒ W in probability as T → ∞, where W (t) =
(W1(t),W2(t),W3(t),W4(t))′ is a four-dimensional standard Brownian motion.

By the FCLT given by Theorem 3.2 and the proof of Theorem 3.1, in probability the conditional
distributions of t?i , i = 1, 2, and F ? converge to the limiting distributions of ti, i = 1, 2, and F ,
respectively. Notice that conditional on {Y4t+s}, {Y ?4t+s} is a finite-order seasonal AR process, so
the derivation of the conditional distributions of t?i , i = 1, 2, and F ? turns out easier than the
that of Theorem 3.1, and in particular does not involve the fourth moments of {Y ?4t+s}. Hence the
justification of the seasonal iid bootstrap augmented HEGY test.

Corollary 3.1. Suppose the assumptions in Theorem 3.1 hold. Then,

sup
x
|P ◦(t?i ≤ x)− P (ti ≤ x)| p→ 0, i = 1, 2,

sup
x
|P ◦(F ? ≤ x)− P (F ≤ x)| p→ 0.

4 Seasonal block bootstrap unaugmented HEGY test

4.1 Unaugmented HEGY test

In the proceeding section our analysis focuses on the augmented HEGY test, a extension of the
ADF test to the seasonal unit root setting. An important alternative of the ADF test is the Phillips-
Perron test (Phillips and Perron, 1988). While the ADF test assumes an AR structure over the noise
and thus becomes parametric, its semi-parametric counterpart, Phillips-Perron test, allows a wide
class of weakly dependent noises. Unaugmented HEGY test (Breitung and Franses, 1998), as the
extension of Phillips-Perron test to the seasonal unit root, inherits the semi-parametric nature and
does not assume the noise to be AR. Given seasonal heterogeneity, it will be shown in Theorem 4.1
that the unaugmented HEGY test estimates seasonal unit root consistently under the very general
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VMA(∞) class of noise (Assumption 1.A), instead of the more restrictive VARMA(p, q) class of
noise (Assumption 1.B), which is needed for the augmented HEGY test.

Now we specify the unaugmented HEGY test. Consider regression

(1− L4)Yt =

4∑
j=1

π̂jYj,t−1 + Vt. (4.1)

Let π̂j be the OLS estimator of πj , tj be the t-statistic corresponding to π̂j , and F34 be the F-
statistic corresponding to π̂3 and π̂4. Other F-statistics F12, F124, F134, and F1234. Similar to the
Phillips-Perron test (Phillips and Perron, 1988), the unaugmented HEGY test allows the use of both
π̂j and tj in testing roots at 1 or −1. As in the augmented HEGY test, we reject H1

0 if π̂1 (or t1) is
too small, reject H2

0 if π̂2 (or t2) is too small, and reject the joint hypotheses if the corresponding
F-statistics are too large. The following results give the asymptotic null distributions of π̂j , tj , and
the F-statistics.

4.2 Real world asymptotics

Theorem 4.1. Assume that Assumption 1.A and one of Assumption 2.A or Assumption 2.B hold.
Then under H1,2,3,4

0 , as T →∞,

(4T )π̂i ⇒
λ2i

∫ 1

0
Wi(r)dWi(r) + Γ(i)

λ2i
∫ 1

0
W 2
i (r)dr

, for i = 1, 2,

(4T )π̂3 ⇒
λ23

∫ 1

0
W3(r)dW3(r) + λ24

∫ 1

0
W4(r)dW4(r) + Γ(3)

1
2 (λ23

∫ 1

0
W 2

3 (r)dr + λ24
∫ 1

0
W 2

4 (r)dr)
,

(4T )π̂4 ⇒
λ3λ4(

∫ 1

0
W3(r)dW4(r)−

∫ 1

0
W4(r)dW3(r)) + Γ(4)

1
2 (λ23

∫ 1

0
W 2

3 (r)dr + λ24
∫ 1

0
W 2

4 (r)dr)
,

ti ⇒
λ2i

∫ 1

0
Wi(r)dWi(r) + Γ(i)√
γ̃(0)λ2i

∫ 1

0
W 2
i (r)dr

≡ Di, for i = 1, 2,

t3 ⇒
λ23

∫ 1

0
W3(r)dW3(r) + λ24

∫ 1

0
W4(r)dW4(r) + Γ(3)√

γ̃(0) 1
2 (λ23

∫ 1

0
W 2

3 (r)dr + λ24
∫ 1

0
W 2

4 (r)dr)
≡ D3

t4 ⇒
λ3λ4(

∫ 1

0
W3(r)dW4(r)−

∫ 1

0
W4(r)dW3(r)) + Γ(4)√

γ̃(0) 1
2 (λ23

∫ 1

0
W 2

3 (r)dr + λ24
∫ 1

0
W 2

4 (r)dr)
≡ D4

F12 ⇒
1

2
(D2

1 + D2
2 ), F34 ⇒

1

2
(D2

3 + D2
4 ),

F134 ⇒
1

3
(D2

1 + D2
3 + D2

4 ), F234 ⇒
1

3
(D2

2 + D2
3 + D2

4 ),

F1234 ⇒
1

4
(D2

1 + D2
2 + D2

3 + D2
4 ),

where c1 = (1, 1, 1, 1)′, c2 = (1,−1, 1,−1)′, c3 = (0,−1, 0, 1)′, c4 = (−1, 0, 1, 0)′, λi =√
c′iΘ(1)ΩΘ(1)′ci/4, Wi = c′iΘ(1)Ω1/2W /2λi, W (t) = (W1(t),W2(t),W3(t),W4(t))′ is a four-

dimensional standard Brownian motion, γ̃(j) are defined in (2.5), Γ(1) =
∑∞
j=1 γ̃(j), Γ(2) =

∑∞
j=1(−1)j γ̃(j),

Γ(3) =
∑∞
j=1 cos(πj/2)γ̃(j), and Γ(4) = −

∑∞
j=1 sin(πj/2)γ̃(j).
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Remark 4.1. The results in Theorem 4.1 degenerate to the asymptotics in Burridge and Taylor
(2001ab) when {V4t+s} is uncorrelated, and degenerate to the asymptotics in Breitung and Franses
(1998) when {V4t+s} is seasonally homogeneous .

Remark 4.2. When {V4t+s} is seasonally homogeneous (Breitung and Franses, 1998), the asymptotic
distributions of (π̂1, t1) and (π̂2, t2) are independent. On the other hand, when {V4t+s} has seasonal
heterogeneity, (π̂1, t1) and (π̂2, t2) are dependent, as what we have seen for augmented HEGY test
(Remark 3.3). Hence, when testing H1,2

0 , it is problematic to test H1
0 and H2

0 separately and calculate
the level of the test with the independence of (π̂1, t1) and (π̂2, t2) in mind. Instead, the test of H1,2

0

should be handled with F12.

Remark 4.3. The parameters λi have the same definition as in Theorem 3.2. Since λ21 =
∑∞
j=−∞ γ̃(j),

and λ22 =
∑∞
j=−∞(−1)j γ̃(j), the asymptotic distributions of π̂i and ti, i = 1, 2, only depends on

the autocorrelation function of {Ṽt}, the misspecified constant parameter representation of {V4t+s}.
Since {Ṽt} can be considered as a seasonally homogeneous version of {V4t+s}, we can conclude that
the asymptotic behaviors of the tests for single roots at 1 or −1 are not affected by the seasonal
heterogeneity in {V4t+s}. On the other side, the asymptotic distributions of the F-statistics does
not solely depend on {Ṽt}. Hence, the test for the concurrence of roots at 1 and −1 and the tests
involving roots at ±i are affected by the seasonal heterogeneity.

Remark 4.4. To remove the nuisance parameters in the asymptotic distributions, we notice that the
asymptotic behaviors of π̂i and ti, i = 1, 2, have identical forms as in Phillips and Perron (1988).
In light of their approach, we can construct pivotal versions of π̂i and ti, i = 1, 2, that converge in
distribution to standard Dickey-Fuller distributions (Dickey and Fuller, 1979). More specifically, for
i = 1, 2, we can substitute any consistent estimator for λ2i and γ̃(0) below:

(4T )π̂i −
1
2 (λ2i − γ̃(0))

(4T )−2
∑
t Y

2
i,t−1

⇒
∫ 1

0
Wi(r)dWi(r)∫ 1

0
W 2
i (r)dr

,√
γ̃(0)

λi
ti −

1
2 (λ2i − γ̃(0))

λ2i

√
(4T )−2

∑
t Y

2
i,t−1

⇒
∫ 1

0
Wi(r)dWi(r)√∫ 1

0
W 2
i (r)dr

.

Remark 4.5. However, there is no easy way to construct pivotal statistics for π̂3, t3, π̂4, t4, and
F-statistics such as F34. The difficulties are two-fold. Firstly the denominators of the asymptotic
distributions of these statistics contain weighted sums with unknown weights λ23 and λ24; secondly
W3 and W4 are in general correlated standard Brownian motions as in Theorem 3.1.

Remark 4.6. The result in Theorem 4.1 can be generalized. Suppose {Y4t+s} is not generated
by H1,2,3,4

0 , and only has some of the seasonal unit roots. Let Ut = (1 − L4)Yt, and Ut =
(U4t−3, U4t−2, U4t−1, U4t)

′. Then we can find H(z) such that Ut = H(B)εt. The asymptotic distri-
butions of the t-statistics and the F-statistics have the same forms as those in Theorem 4.1, with
Θ(1) substituted by H(1), and γ̃ based on {Ut}.

4.3 Seasonal block bootstrap algorithm

Since many of the asymptotic distributions delivered in Theorem 4.1 are non-standard, non-pivital,
and not directly pivotable, we propose the application of bootstrap. Since the regression error
{V4t+s} of (4.1) is seasonally stationary, we in particular apply the seasonal block bootstrap of
Dudek et al. (2014). The algorithm of seasonal block bootstrap seasonal unit root test is illustrated
below.
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Algorithm 4.1. Step 1: get the OLS estimators π̂1, π̂2, t-statistics t1, t2, and the F-statistics F
from the regression of the unaugmented HEGY test

(1− L4)Yt =

4∑
j=1

π̂jYj,t−1 + et, t = 1, ..., 4T ;

Step 2: record residual V̂t from regression

(1− L4)Y4t+s =

4∑
j=1

π̂j,sYj,4t+s−1 + V̂4t+s;

Step 3: let V̌4t+s = V̂4t+s − 1
T

∑T
t=1 V̂4t+s, choose a integer block size b, and let l = b4T/bc. For

t = 1, b+ 1, ..., (l − 1)b+ 1, let

(V ∗t , ..., V
∗
t+b−1) = (V̌It , ..., V̌It+b−1),

where {It} is a sequence of iid uniform random variables taking values in {t− 4R1,n, ..., t− 4, t, t+
4, ..., t+ 4R2,n} with R1,n = b(t− 1)/4c and R2,n = b(n− b− t+ 1)/4c;

Step 4: set the π̂j,s corresponding to the null hypothesis to be zero. For example, set π3,s = π4,s = 0
for all s when testing roots at ±i. Generate {Y ∗t } by

(1− L4)Y ∗4t+s =

4∑
j=1

π̂j,sY
∗
j,4t+s−1 + V ∗4t+s;

Step 5: get OLS estimates π̂∗1 , π̂∗2 , t-statistics t∗1, t∗2, and F-statistics F ∗ from regression

(1− L4)Y ∗t =

4∑
j=1

π̂∗jY
∗
j,t−1 + e∗t , t = 1, ..., 4T ;

Step 6: run step 3, 4, and 5 for B times to get B sets of statistics π̂∗1 , π̂∗2 , t∗1, t∗2, and F ∗. Count
separately the numbers of π̂∗1 , π̂∗2 , t∗1, t∗2, and F ∗ than which π̂1, π̂2, t1, t2, and F are more extreme.
If these numbers are higher than B(1− level), then consider π̂1, π̂2, t1, t2 and F extreme, and reject
the corresponding hypotheses.

4.4 Seasonal block bootstrap asymptotics

Theorem 4.2. Let S∗T (u1, u2, u3, u4)′

=
1√
4T

(

b4Tu1c∑
t=1

V ∗t /σ
∗
1 ,

b4Tu2c∑
t=1

(−1)tV ∗t /σ
∗
2 ,

b4Tu3c∑
t=1

√
2 sin(

πt

2
)V ∗t /σ

∗
3 ,

b4Tu4c∑
t=1

√
2 cos(

πt

2
)V ∗t /σ

∗
4)′,

where

σ∗1 = Std◦[
1√
4T

4T∑
t=1

V ∗t ], σ∗2 = Std◦[
1√
4T

4T∑
t=1

(−1)tV ∗t ],
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σ∗3 = Std◦[
1√
4T

4T∑
t=1

√
2 sin(

πt

2
)V ∗t ], σ∗4 = Std◦[

1√
4T

4T∑
t=1

√
2 cos(

πt

2
)V ∗t ].

If b → ∞, T → ∞, b/
√
T → 0, then no matter which hypothesis is true, S∗T ⇒ W in probability,

where W (t) = (W1(t),W2(t),W3(t),W4(t))′ is a four-dimensional standard Brownian motion.

By the FCLT given by Theorem 4.2, the proof of Theorem 4.1, and the convergence of the
bootstrap standard deviation σ∗i (Dudek et al., 2014), we have that the conditional distribution
of t∗i , i = 1, 2, and F ∗ in probability converges to the limiting distribution of ti, i = 1, 2, and F ,
respectively. Hence the justification of the seasonal block bootstrap unaugmented HEGY test.

Corollary 4.1. Suppose the assumptions in Theorem 4.1 hold. If b→∞, T →∞, b/
√
T → 0, then

sup
x
|P ◦(t∗i ≤ x)− P (ti ≤ x)| p→ 0, i = 1, 2,

sup
x
|P ◦(F ∗ ≤ x)− P (t ≤ x)| p→ 0.

5 Simulation

5.1 Data generating process

We focus on the hypotheses test for root at 1 (H1
0 against H1

1 ), root at −1 (H2
0 against H2

1 ), and root
at ±i (H3,4

0 against H3,4
1 ). In each hypothesis test, we equip one sequence with all nuisance unit roots

at 1, −1, and ±i, and the other with none of the nuisance unit roots. The detailed data generation
processes are listed in Table 1. To produce power curves, we let parameter ρ =0, 0.004, 0.008,
0.012, 0.016, and 0.020. Notice that ρ is set to be seasonally homogeneous for the sake of simplicity.
Further, we generate six types of innovations {V4t+s} according to Table 2, where εt ∼ iid N(0, 1).
The values of φs are assigned so that the misspecified constant parameter representation (see Section
2) of the “period” sequence has almost the same AR structure as the “ar” sequence.

Table 1: Data generation processes

Data Generating
Processes

Nuisance Root
No Yes

Root
1 (1− (1− ρ)L)Yt = Vt (1 + L)(1 + L2)(1− (1− ρ)L)Yt = Vt
−1 (1 + (1− ρ)L)Yt = Vt (1− L)(1 + L2)(1 + (1− ρ)L)Yt = Vt
±i (1 + (1− ρ)L2)Yt = Vt (1 + L)(1− L)(1 + (1− ρ)L2)Yt = Vt

Table 2: Types of noises

Noise
Type

iid Vt = εt

heter
V4t+s = σsε4t+s,

σ1 = 10, σ2 = σ3 = σ4 = 1
mapos Vt = εt + 0.5εt−1
maneg Vt = εt − 0.5εt−1

ar Vt = εt + 0.5Vt−1

period
V4t+s = ε4t+s + φsV4t+s−1,

φ1 = 0.2, φ2 = 0.45, φ3 = 0.65, φ4 = 0.8
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5.2 Testing procedure

Here we give additional details for the algorithms of the seasonal iid bootstrap augmented HEGY
test (Algorithm 3.1) and the seasonal block bootstrap unaugmented HEGY test (Algorithm 4.1)
used in the simulations.

5.2.1 Seasonal iid bootstrap augmented HEGY test

To improve the empirical performance of seasonal iid bootstrap algorithm (Algorithm 3.1), we select
stepwise, truncate the coefficient estimators, and use (3.3) when testing roots at 1 or −1. Firstly, a
stepwise selection procedure is applied to the regression in step 2 of Algorithm 3.1. To begin with,
we choose a maximum lag kmax. kmax may be chosen by AIC, BIC, or modified information criteria
(for further discussions, see Castro, Osborn, and Taylor, 2016). In our simulation we fix kmax = 4 for
simplicity. Afterward, we apply a stepwise selection with Variance Inflating Factor (VIF) criterion
to solve the multicollinearity between the regressors. In this selection, we locate the regressor with
the largest VIF, remove this regressor from the regression if its VIF is larger than 10, and rerun the
regression. Then we implement another stepwise selection on lags (1−L4)Y4t+s−i, i = 1, 2, ..., k, by
iteratively removing lags whose t-statistics have absolute values smaller than 1.65 (see also Burridge
and Taylor, 2004). Then the estimated coefficients of the deleted regressors are set to be zero, while
the estimated coefficients of the remaining regressors are recorded and used in step 2 and 4. The
stepwise selection on the t-statistics of the lags are also applied to step 1 and 5.

Secondly, notice that in step 2, the true parameters πj,s, j = 1, 2, 3, are smaller or equal to
zero under both null and alternative hypotheses. However, the OLS estimators π̂j,s, j = 1, 2, 3,
are often positive, especially when πj,s = 0. This positivity not only renders the estimation of πj,s
inaccurate, but also makes the equation in step 4 of Algorithm 3.1 non-causal, and the bootstrapped
sequence {Y ?4t+s} explosive. The solution of this problem is to truncate the OLS estimator. Let
π̌j,s = min(0, π̂j,s), j = 1, 2, 3. Immediately we get |π̌j,s − πj,s| ≤ |π̂j,s − πj,s|. After we substitute
π̌j,s for π̂j,s in step 4, the empirical performance of seasonal iid bootstrap improves significantly.

Thirdly, we use the original step 4 of Algorithm 3.1 when testing roots at ±i, but apply the
alternative step (3.3) to the test of root at 1 or −1. (When apply the alternative step (3.3), we
similarly select stepwise the lags and truncate the coefficients.) Unpublished simulation result shows
an advantage of (3.3) when testing root at 1 or −1. This advantage occurs especially when all
nuisance roots occur, or equivalently when all of the true πj,s’s are zero, since in this case the
inclusion of Y ?j,4t+s−1 in (3.3) becomes redundant.

5.2.2 Seasonal block bootstrap unaugmented HEGY test

To improve the empirical performance of seasonal block bootstrap algorithm (Algorithm 4.1), we
truncate the coefficient estimators, taper the blocks, and optimize the block size. Firstly, as in the
seasonal iid bootstrap algorithm, we let π̌j,s = min(0, π̂j,s), j = 1, 2, 3, and substitute π̌j,s for π̂j,s in
step 4.

Secondly, it is known that the bootstrapped data around the edges of the bootstrap blocks are
not good imitations of the original data. To reduce this “edge effect”, we apply tapered seasonal
block bootstrap proposed by Dudek, Paparoditis, and Politis (2016), which put less weight on the
bootstrapped data around the edges. In our simulation the weight function is set identical to the
function in Dudek et al. (2016).

Thirdly, both test statistics π̂j and tj can be employed to run seasonal block bootstrap unaug-
mented HEGY test. So do various block sizes. In the following preliminary simulation we check the
impact on empirical sizes of choices of test statistics and block sizes (for a thorough discussion on
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optimal block size, see Paparoditis and Politis, 2003). Let π̂(i) indicates the bootstrap test based on
coefficient estimator π̂ with block size i, and t(i) indicates the bootstrap test based on t-statistics t
with block size i. Set the sample size T = 120; in each test B = 250 bootstrap replicates are created;
the nominal size α = 0.05; the empirical sizes are calculated using N = 300 iterations. The results
on the empirical sizes of the tests are included in Table 3, 4, and 5.

From Table 3, 4, and 5 we can see that the choice of statistics and block sizes does not affect
the empirical sizes of the tests very much. (Indeed, unpublished simulations show that empirical
powers are not much affected either.) We also find that the distortion of empirical size becomes the
worst when testing root at −1 with nuisance roots and mapos noise. Noticing t(4) gives the best
result in the worst scenario, we base the test on the t-statistics and let the block size be four in the
succeeding simulations.

Table 3: Empirical sizes of tests for unit root at 1

Nuisance
Root

Noise
Type

Tests
π̂(4) π̂(8) π̂(12) t(4) t(8) t(12)

False

iid 0.067 0.047 0.043 0.067 0.050 0.040
heter 0.057 0.067 0.050 0.053 0.063 0.040
mapos 0.090 0.050 0.030 0.087 0.050 0.023
maneg 0.080 0.073 0.093 0.080 0.060 0.093

ar 0.043 0.047 0.063 0.047 0.053 0.060
period 0.043 0.043 0.047 0.047 0.043 0.047

True

iid 0.137 0.123 0.110 0.117 0.110 0.110
heter 0.160 0.160 0.193 0.160 0.150 0.190
mapos 0.063 0.053 0.073 0.053 0.043 0.057
maneg 0.517 0.500 0.570 0.527 0.500 0.567

ar 0.010 0.023 0.033 0.010 0.020 0.030
period 0.017 0.003 0.023 0.017 0.007 0.023

Table 4: Empirical sizes of tests for unit root at −1

Nuisance
Root

Noise
Type

Tests
π̂(4) π̂(8) π̂(12) t(4) t(8) t(12)

False

iid 0.040 0.043 0.053 0.040 0.047 0.050
heter 0.040 0.073 0.040 0.047 0.060 0.033
mapos 0.080 0.080 0.073 0.073 0.080 0.073
maneg 0.060 0.063 0.043 0.063 0.067 0.043

ar 0.040 0.047 0.050 0.047 0.047 0.053
period 0.030 0.037 0.050 0.037 0.033 0.063

True

iid 0.143 0.127 0.127 0.143 0.120 0.130
heter 0.123 0.147 0.177 0.120 0.140 0.173
mapos 0.483 0.543 0.533 0.463 0.550 0.523
maneg 0.070 0.083 0.077 0.070 0.070 0.077

ar 0.240 0.313 0.343 0.233 0.313 0.333
period 0.247 0.327 0.310 0.243 0.310 0.303
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Table 5: Empirical sizes of tests for unit roots at ±i

Nuisance
Root

Noise
Type

Tests
F (4) F (8) F (12)

False

iid 0.053 0.050 0.047
heter 0.067 0.090 0.073
mapos 0.067 0.060 0.047
maneg 0.073 0.040 0.083

ar 0.047 0.030 0.030
period 0.053 0.040 0.027

True

iid 0.017 0.020 0.017
heter 0.013 0.020 0.010
mapos 0.087 0.063 0.097
maneg 0.060 0.067 0.123

ar 0.113 0.147 0.120
period 0.093 0.100 0.090

5.3 Results

Now we present in Figure 1, 2, and 3 the main simulation result of the seasonal iid bootstrap
augmented HEGY test and the seasonal block bootstrap unaugmented HEGY test. This simulation
includes two cases of nuisance roots (see Table 1) and six types of noises (see Table 2), and sets
sample size T = 120, number of bootstrap replicates B = 500, number of iterations N = 600, and
nominal size α = 0.05.

5.3.1 Root at 1

When our data have a potential root at 1, but no other nuisance roots at −1 or ±i, the power curves
of the both bootstrap tests almost overlap, according to (a)-(f) in Figure 1. Further, both power
curves start at the correct size, α = 0.05, and tend to one when ρ departs from zero. Hence both
tests work well when no nuisance root occurs.

When data have a potential root at 1 and all nuisance roots at −1 and ±i, the sizes of seasonal
block bootstrap unaugmented HEGY test are distorted in (g), (h), (j), and (l) in Figure 1. These
distortions may result from the errors in estimating πj,s and the need to recover {Y4t+s} with the
estimated πj,s. The size distortion in (j) is particularly serious, since the unit root filter (1 − L) is
partially cancelled by the Moving Average (MA) filter (1 − 0.5L), and this cancellation cannot be
handled well by block bootstrap (Paparoditis and Politis, 2003). In contrast, in (l) the filter (1−L)
is enhanced by the AR filters (1− φsL), thus the size is distorted toward zero.

On the other hand, seasonal iid bootstrap unaugmented HEGY test is free of the size distortions
when data have nuisance roots. This is in part because the test recovers {Y4t+s} using the true
values of πj,s, namely zero, instead of using the estimated values. Moreover, when both HEGY
tests have almost the correct sizes as in (i) and (k), seasonal iid bootstrap unaugmented HEGY
test attains in general higher power. Therefore, when testing the root at 1, seasonal iid bootstrap
unaugmented HEGY test is recommended.
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(a) noise=iid (b) noise=heter (c) noise=mapos (d) noise=maneg

(e) noise=ar (f) noise=period (g) noise=iid (h) noise=heter

(i) noise=mapos (j) noise=maneg (k) noise=ar (l) noise=period

Figure 1: Powers as a function of ρ when testing roots at 1
(a)-(f) have no nuisance roots; (g)-(l) have all nuisance roots;

blue dotted curve is for seasonal iid bootstrap; red solid curve is for seasonal block bootstrap.

5.3.2 Root at -1

Now we come to the tests for root at −1. When none of the nuisance root at 1 or ±i exists, the
power curves of the two tests are very close to each other, as (a)-(f) in Figure 2 indicate. This
closeness of curves has been seen in (a)-(f) in Figure 1, and indicates the nice performance of both
tests.

When nuisance roots are present, sizes of seasonal block bootstrap unaugmented HEGY test are
distorted in nearly all scenarios in (g)-(l) in Figure 2. In particular, the size distortion in (i) is the
worst, because of the partial cancellation of the seasonal unit root filter (1 + L) and the MA filter
(1 + 0.5L). However, the power curves of seasonal iid bootstrap augmented HEGY test start around
the nominal size 0.05 in all of (g)-(l). Further, these curves tend to 1, as ρ grows larger. Therefore,
we recommend seasonal iid bootstrap test for testing root at −1.
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(a) noise=iid (b) noise=heter (c) noise=mapos (d) noise=maneg

(e) noise=ar (f) noise=period (g) noise=iid (h) noise=heter

(i) noise=mapos (j) noise=maneg (k) noise=ar (l) noise=period

Figure 2: Powers as a function of ρ when testing roots at −1
(a)-(f) have no nuisance roots; (g)-(l) have all nuisance roots;

blue dotted curve is for seasonal iid bootstrap; red solid curve is for seasonal block bootstrap.

5.3.3 Root at ±i

Finally we discuss the tests for roots at ±i. With none of the nuisance root at 1 or −1, (a)-(f) in
Figure 3 illustrate that both tests achieve sizes that are close to the nominal size, and powers that
tend to one. When all of nuisance roots show up, both tests suffer from some size distortions. The
empirical sizes of seasonal iid bootstrap augmented HEGY test are biased toward zero in (g)-(l);
the sizes of seasonal block bootstrap unaugmented HEGY test are biased toward zero in (g) and
(h), but are biased toward one in (j)-(l). On the other hand, seasonal block bootstrap unaugmented
HEGY test’s empirical powers prevail throughout (g)-(l), and therefore shall be recommended for
testing roots at ±i.
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(a) noise=iid (b) noise=heter (c) noise=mapos (d) noise=maneg

(e) noise=ar (f) noise=period (g) noise=iid (h) noise=heter

(i) noise=mapos (j) noise=maneg (k) noise=ar (l) noise=period

Figure 3: Powers as a function of ρ when testing roots at ±i
(a)-(f) have no nuisance roots; (g)-(l) have all nuisance roots;

blue dotted curve is for seasonal iid bootstrap; red solid curve is for seasonal block bootstrap.

6 Conclusion

In this paper we analyze the non-periodic augmented and unaugmented HEGY tests in the seasonal
heterogeneous setting. Given root at 1 or −1, the asymptotic distributions of the test statistics are
standard. However, given concurrent roots at 1 and −1, or roots at ±i, the asymptotic distributions
are not standard, pivotal, nor directly pivotable. Therefore, when seasonal heterogeneity exists,
HEGY tests can be used to test the single roots at 1 or −1, but cannot be directly applied to any
combinations of roots.

Bootstrap proves to be an effective remedy for HEGY tests in the seasonal heterogeneous setting.
The two bootstrap approaches, namely 1) seasonal iid bootstrap augmented HEGY test and 2)
seasonal block bootstrap unaugmented HEGY test, turn out to be both theoretically solid. In the
comparative simulation study, seasonal iid bootstrap augmented HEGY test has better performance
when testing roots at 1 or −1, but seasonal block bootstrap unaugmented HEGY test outperforms
when testing roots at ±i.

Therefore, when testing seasonal unit roots under seasonal heterogeneity, the aforementioned
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bootstrap HEGY tests become competitive alternatives of the Wald-test proposed by Ghysels et al.
(1996). Further study will be needed to compare the theoretical and empirical efficiency of the two
bootstrap HEGY tests and the Wald-test by Ghysels et al. (1996).

7 Appendix

The appendix includes the proof of the theorems in this paper. We first present the proof for the
asymptotics of the unaugmented HEGY test, then the asymptotics of the augmented HEGY test,
then the consistency of the seasonal iid bootstrap augmented HEGY test, and finally the consistency
of the seasonal block bootstrap unaugmented HEGY test.

7.1 Proof of Theorem 4.1.

Lemma 1. Suppose Assumption 2.A or Assumption 2.B hold. Let Yt = (Y4t−3, Y4t−2, Y4t−1, Y4t)
′,

Vt = (V4t−3, V4t−2, V4t−1, V4t)
′. Let Γj = E[VtV

′
t−j ]. Let W (t) = (W1(t),W2(t),W3(t),W4(t))′ be a

four-dimensional standard Brownian motion. Let
∫
W dW ′ denotes

∫ 1

0
W (r)dW (r)′, and

∫
WW ′

denotes
∫ 1

0
W (r)W (r)′dr. Then, under H1,2,3,4

0 ,

T−1
T∑
t=1

Yt−1V
′
t ⇒ Θ(1)Ω1/2{

∫
W dW ′}Ω1/2Θ(1)′ +

∞∑
j=1

Γ′j ≡ Q1,

T−2
T∑
t=1

Yt−1Y
′
t−1 ⇒ Θ(1)Ω1/2{

∫
WW ′}Ω1/2Θ(1)′ ≡ Q2,

T−1
T∑
t=1

VtV
′
t−j

p→ Γj .

Proof. See Hamilton (1994, proposition 18.1) for the proof given iid innovations, Chan and Wei
(1988) under Assumption 2.A, and De Jong and Davidson (2000) under Assumption 2.B.

Lemma 2. Let XU,j = (Yj,0, ..., Yj,4T−1)′, and XU = (XU,1,XU,2,XU,3,XU,4), where U stands
for unaugmented HEGY, and {Yj,4t+s} is defined in (2.4). Let V = (V1, ..., V4T )′, Υ be the matrix
generated by assigning zero to all entries of Γ0 but those above the main diagonal. Then, under
H1,2,3,4

0 ,

(a)

(4T )−2(X ′UXU )11 ⇒
1

4
c′1Q2c1 ≡ η1,

(4T )−2(X ′UXU )22 ⇒
1

4
c′2Q2c2 ≡ η2,

(4T )−2(X ′UXU )33 ⇒
1

8
(c′3Q2c3 + c′4Q2c4) ≡ η3,

(4T )−2(X ′UXU )44 ⇒
1

8
(c′3Q2c3 + c′4Q2c4) ≡ η3,

(4T )−1(X ′UXU )ij
p→ 0, for i 6= j.

(b)
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(4T )−1X ′U,1V ⇒
1

4
(c′1Q1c1 + c′1Υc1) ≡ ξ1,

(4T )−1X ′U,2V ⇒
1

4
(c′2Q1c2 + c′2Υc2) ≡ ξ2,

(4T )−1X ′U,3V ⇒
1

4
(c′3Q1c3 + c′4Q1c4 + c′3Υc3 + c′4Υc4) ≡ ξ3,

(4T )−1X ′U,4V ⇒
1

4
(c′3Q1c4 − c′4Q1c3 + c′3Υc4 − c′4Υc3) ≡ ξ4.

Proof. For the proof of part (a), see the Lemma 3.2(a) of Burridge and Taylor (2001a) and its proof.
For part (b), we only present the proof of the first statement. Other statements are proven in similar
ways. By Lemma 1,

(4T )−1X ′U,1V = (4T )−1
T∑
t=1

0∑
s=−3

Y1,4t+s−1V4t+s

= (4T )−1
T∑
t=1

0∑
s=−3

(c′1Yt−1 +

s∑
i=−2

V4t−1+i)V4t+s

= (4T )−1
T∑
t=1

c′1Yt−1V
′
t c1 + (4T )−1

T∑
t=1

0∑
s=−3

s∑
i=−2

V4t−1+iV4t+s

⇒ 1

4
(c′1Q1c1 + c′1Υc1)

Proof of Theorem 4.1. Let π = (π1, π2, π3, π4)′, π̂ = (π̂1, π̂2, π̂3, π̂4)′, t = (t1, t2, t3, t4)′, and σ̂2 =
(4T )−1(V −XU π̂)′(V −XU π̂). Then

(4T )π̂ = (X ′UXU )−1X ′UV ⇒ [diag(η1, η2, η3, η4)]−1(ξ1, ξ2, ξ3, ξ4)′ by Lemma 2,

σ̂2 = (4T )−1(V ′V + 2(XU π̂ −XUπ)′(V −XUπ)

+(XU π̂ −XUπ)′(XU π̂ −XUπ))

= (4T )−1V ′V + op(1) by the consistency of π̂
p→ tr(Γ0)/4,

t = σ̂−1[diag(X ′UXU )−1]−1/2(X ′UXU )−1X ′UV

⇒ (tr(Γ0)/4)−1/2[diag(η1, η2, η3, η4)]−1/2(ξ1, ξ2, ξ3, ξ4)′.

Further, the asymptotic distributions of F-statistics are identical with the asymptotic distributions

of the averages of the squares of the corresponding t-statsitics, for example, F34 − 1
2 (t23 + t24)

p→ 0,
due to the asymptotic orthogonality indicated by Lemma 2.

7.2 Proof of Theorem 3.1.

The proof follows the lines of Said and Dickey (1984) and contains two parts. Firstly, we show when
T →∞ and k = kT →∞ simultaneously, the statistic of interest tends to a limit free of k, and then
we prove this limit tends to a certain distribution as T →∞.

To begin with, notice that when k → ∞, the error term of regression (3.2) tends to a limit.
Surprisingly, this limit is in general not εt, because the regression (3.2) falsely assumes seasonally
homogeneous coefficients and thus in general cannot find the correct residuals εt. To find the limit,
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recall that {Ṽt} is defined as a misspecified constant parameter representation of {V4t+s}. Under
Assumption 1.B, the spectral densities of {Ṽt} are finite and positive everywhere, so {Ṽt} has AR(∞)
and MA(∞) expressions

ψ̃(L)Ṽt = ζ̃t and Ṽt = θ̃(L)ζ̃t, (7.1)

where ψ̃(z) = 1 −
∑∞
i=1 ψ̃iz

i, θ̃(z) = 1 +
∑∞
i=1 θ̃iz

i. Let ζ
(k)
t = Vt −

∑k
i=1 ψ̃iVt−i, and ζt =

Vt−
∑∞
i=1 ψ̃iVt−i, where {ψ̃i} are the AR coefficients defined in (7.1). Since a misspecified constant

parameter representation of ζt is Ṽt−
∑∞
i=1 ψ̃iṼt−i, which is exactly ζ̃t defined in (7.1), no ambiguity

arises. The following lemma provides two properties of {ζt}, whose proof is left to the readers.

Lemma 3.

(a)
1

4

0∑
s=−3

Cov(ζ4t+s−j , ζ4t+s) = 0, ∀j = 1, 2, ...,

(b)
1

4

0∑
s=−3

Cov(V4t+s−j , ζ4t+s) = 0, ∀j = 1, 2, ....

Now we show when T →∞ and k →∞ simultaneously, the statistics of interest tend to certain
limits. Let X be the design matrix of regression equation (3.2), β̂ = (π̂1, π̂2, π̂3, π̂4, φ̂1, ..., φ̂k)′

be the estimated coefficient vector of regression equation (3.2), β = (0, 0, 0, 0, ψ̃1, ..., ψ̃k)′, ζ(k) =

(ζ
(k)
1+k, ..., ζ

(k)
4T )′, and ζ = (ζ1+k, ..., ζ4T )′. Define the (4 + k) × (4 + k) dimensional scaling matrix

DT = diag((4T − k)−1, (4T − k)−1, (4T − k)−1, (4T − k)−1, (4T − k)−1/2, ..., (4T − k)−1/2). Then

D−1T (β̂ − β) = (DTX
′XDT )−1DTX

′ζ(k).

Let || · || be the L2 induced norm of matrices. Now we want to define a diagonal matrix R such that
||DTX

′XDT −R|| converges to 0 in probability. By the multivariate Beveridge-Nielson Decompo-
sition (see Hamilton, 1994, pp. 545-546), since (4T − k)−1

∑
(1− L4)Yt−i(1− L4)Yt−j converges in

probability to the seasonal average of autocovariance of Vt of lag |i− j|, we let

R = diag(R1, R2, R3, R4, Γ̃),

where

R1 =
c′1Θ(1)

∑
StS

′
tΘ(1)′c1

(4T − k)2

R2 =
c′2Θ(1)

∑
StS

′
tΘ(1)′c2

(4T − k)2

R3 =
c′3Θ(1)

∑
StS

′
tΘ(1)′c3 + c′4Θ(1)

∑
StS

′
tΘ(1)′c4

2(4T − k)2

R4 = R3, St =

t∑
i=1

εi, Γ̃i,j = γ̃(|i− j|).

Following the definition of R, we make the following decomposition:

D−1T (β̂ − β) = (DTX
′XDT )−1DTX

′ζ(k)

= [(DTX
′XDT )−1 −R−1]DTX

′ζ(k)

+R−1DTX
′(ζ(k) − ζ)

+R−1DTX
′ζ

(7.2)
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Notice the last term in the right hand side summation, R−1DTX
′ζ, is free of k. Later we will find

out its asymptotic distribution as T → ∞. But now we need to prove the first two terms in the
right hand side of (7.2) converge to zero as T →∞ and k →∞. Indeed,

||(DTX
′XDT )−1 −R−1|| = op(k

−1/2), (7.3)

||DTX
′(ζ(k) − ζ)|| = op(1), (7.4)

||DTX
′ζ|| = Op(k

1/2), (7.5)

||R−1|| = Op(1). (7.6)

Equation (7.3) can be proven straightforwardly (see Said and Dickey, 1984). For (7.4), notice

E||DTX
′(ζ(k) − ζ)||2

=E[(4T − k)−2
4∑
j=1

(
∑
t

Yj,t−1(ζ
(k)
t − ζt))2 + (4T − k)−1

k∑
i=1

(
∑
t

Vt−i(ζ
(k)
t − ζt))2].

Notice that ζ
(k)
t − ζt =

∑∞
i=k+1 ψ̃iVt−i. Under assumption 1.B, {V4t+s} is a VARMA sequence with

finite orders, thus {Ṽt} also has an ARMA expression with finite orders (see Osborn, 1991),

ϕ̃(L)Ṽt = ϑ̃(L)ζ̃t. (7.7)

Hence, ψ̃(L) = ϑ̃(L)−1ϕ̃(L) has exponentially decaying coefficient ψ̃i. It follows straightforwardly
that E||DTX

′(ζ(k) − ζ)||2 → 0. For (7.5), notice that

E||DTX
′ζ||2 = E[(4T − k)−2

4∑
j=1

(

4T∑
t=k+1

Yj,t−1ζt)
2 + (4T − k)−1

k∑
i=1

(

4T∑
t=k+1

Vt−iζt)
2].

By Lemma 3 and the stationarity of {εt},

E[((4T − k)−1/2
4T∑

t=k+1

Vt−iζt)
2]

=
1

4

0∑
s=−3

∞∑
h=−∞

Cov(V4t+s−iζ4t+s, V4t+s−h−iζ4t+s−h) + o(1)

=
1

4

0∑
s=−3

∞∑
h=−∞

Cov(Vs−iζs, Vs−h−iζs−h) + o(1)

Without loss of generality we can focus on i = 1 and s = 0. By writing Vt and ζt as linear
combinations of εt,

∞∑
h=−∞

Cov(V−1ζ0, V−h−1ζ−h) ≤ const. supi1,j1,i2,j2

∞∑
h=−∞

|Cov(εi1−1εj1 , εi2−h−1εj2−h)|.

The right hand side of this inequality is assumed to be bounded under Assumption 2.A. On the
other hand, the right hand side is also bounded under Assumption 2.B, by the lemma below.
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Lemma 4. Suppose (i) {zt}nt=1 is a strictly stationary strong mixing time series with mean zero
and finite 4 + δ moment for some δ > 0, and (ii) {zt}’s strong mixing coefficient α(h) satisfies∑∞
h=1 hα

δ/(4+δ)(h) <∞. Then ∃K > 0 such that for all i1, i2, j1, and j2,

∞∑
h=−∞

|Cov(zi1zj1 , zi2−hzj2−h)| < K.

Proof. Let h1 = h+ i1 − i2, h2 = h+ j1 − j2, h3 = h+ i1 − j2, h4 = h+ j1 − i2. By Lemma A.0.1
of Politis, Romano, and Wolf (1999),

∞∑
h=−∞

|Cov(zi1zj1 , zi2−hzj2−h)|

≤ const.

∞∑
h=−∞

(α(min(|h1|, |h2|, |h3|, |h4|)))
δ

4+δ

≤ const.

∞∑
h=−∞

(α(|h1|)
δ

4+δ + α(|h2|)
δ

4+δ + α(|h3|)
δ

4+δ + α(|h4|)
δ

4+δ )

≤ const.

∞∑
h=−∞

(α(|h|)).

We have proven that E[((4T − k)−1/2
∑4T
t=k+1 Vt−iζt)

2] = O(1). Similarly, it can be shown that

E[((4T − k)−1
∑4T
t=k+1 Yj,t−1ζt)

2] = O(1). Hence, (7.5) follows. To justify (7.6), notice

c′iΘ(1)Ω1/2
∑
StS

′
tΩ

1/2Θ(1)′ci
(4T − k)2

⇒ c′iΘ(1)Ω1/2

∫
WW ′Ω1/2Θ(1)′ci,

where W indicates standard four-dimensional Brownian Motion. Since

P (c′iΘ(1)Ω1/2

∫
WW ′Ω1/2Θ(1)′ci = 0) = 0,

∀ε > 0, ∃Mε > 0, such that P (c′iΘ(1)Ω1/2
∫
WW ′Ω1/2Θ(1)′ci < Mε) < ε. (7.6) follows from the

definition of Op(1).
Combining equations (7.3), (7.4), (7.5), and (7.6), we have

||[(DTX
′XDT )−1 −R−1]DTX

′ζ(k)|| = op(1)

||R−1DTX
′(ζ(k) − ζ)|| = op(1)

||R−1DTX
′ζ|| = Op(k

1/2).

From these results, we can immediately show the consistency of β̂. Notice D−1T (β̂ − β) = Op(k
1/2)

by (7.2). The consistency follows from ||DT || = O((4T − k)−1) and k = o(T 1/3). Further, the
asymptotic distribution of β̂ can be derived with the asymptotic equivalence of D−1T (β̂ − β) and
R−1DTX

′ζ. Notice R−1DTX
′ζ is free of k. As T → ∞, R−1 converges in distribution to a

functional of Brownian motion, and the asymptotics of DTX
′ζ can be found with the following

lemma.
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Lemma 5.

1

4T

4T∑
t=1

Y1,t−1ζt ⇒ V ar(ζ̃t)θ̃(1)

∫ 1

0

W1(r)dW1(r),

1

4T

4T∑
t=1

Y2,t−1ζt ⇒ V ar(ζ̃t)θ̃(−1)

∫ 1

0

W2(r)dW2(r),

(
1

4T

4T∑
t=1

Y3,t−1ζt)
2 + (

1

4T

4T∑
t=1

Y4,t−1ζt)
2

⇒
V ar(ζ̃t)[

1
4c
′
4Θ(1)ΩΘ(1)′c4

∫
W4(r)dW4(r) + 1

4c
′
3Θ(1)ΩΘ(1)′c3

∫
W3(r)dW3(r)]2

1
4 (c′4Θ(1)ΩΘ(1)′c4 + c′3Θ(1)ΩΘ(1)′c3)

+
V ar(ζ̃t)[

√
1
4c
′
4Θ(1)ΩΘ(1)′c4

1
4c
′
3Θ(1)ΩΘ(1)′c3(

∫ 1

0
W3(r)dW4(r)−

∫
W4(r)dW3(r))]2

1
4 (c′4Θ(1)ΩΘ(1)′c4 + c′3Θ(1)ΩΘ(1)′c3)

.

Proof of Lemma 5. Firstly we focus on the convergence of 1
4T

∑4T
t=1 Y1,t−1ζt. The convergence of

1
4T

∑4T
t=1 Y2,t−1ζt can be proven analogously. Let ξt = ψ̃(L)Yt, ξ1,t = ψ̃(L)Y1,t, ξt = (ξ4t−3, ξ4t−2, ξ4t−1, ξ4t)

′,
ζt = (ζ4t−3, ζ4t−2, ζ4t−1, ζ4t)

′. Then Bξt = ζt, and

1

4T

4T∑
t=1

Y1,t−1ζt

= θ̃(1)
1

4T

4T∑
t=1

0∑
s=−3

ξ1,4t+s−1ζ4t+s (by Beveridge-Nielson Decomposition, up to op(1))

= θ̃(1)
1

4T

T∑
t=1

[c′1ξt−1ζ
′
tc1 +

0∑
s=−3

s−1∑
k=−3

ζ4t+kζ4t+s]

⇒ 1

4
θ̃(1)c′1Ψ̃(1)Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′Ψ̃(1)′c1 (by Lemma 3 and FCLT)

+
1

4
θ̃(1)[

0∑
s=−3

s−1∑
k=−3

Eζ4t+kζ4t+s + c′1

∞∑
i=1

Eζt−iζ
′
tc1]

=
1

4
θ̃(1)c′1Ψ̃(1)Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′Ψ̃(1)′c1 (since {ζ̃t} is white noise)

=
1

4
θ̃(1)(ψ̃(1))2c′1Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c1 (since c′1Ψ̃(1) = ψ̃(1)c′1)

= V ar(ζ̃t)θ̃(1)

∫ 1

0

W1(r)dW1(r)

(by Osborn (1991, p. 378),
1

4
c′1Θ(1)ΩΘ(1)′c1 = V ar(ζ̃t)θ̃(1)2).

Secondly we show the convergence of ( 1
4T

∑4T
t=1 Y3,t−1ζt)

2+( 1
4T

∑4T
t=1 Y4,t−1ζt)

2. Let ξ3,t = ψ̃(L)Y3,t,

ψ̃a = (ψ̃(i) + ψ̃(−i))/2, ψ̃b = (ψ̃(i) − ψ̃(−i))/2i, θ̃a = (θ̃(i) + θ̃(−i))/2, and θ̃b = (θ̃(i) − θ̃(−i))/2i.
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Then

1

4T

4T∑
t=1

Y3,t−1ζt

=
1

4T

4T∑
t=1

(θ̃aξ3,t−1 − θ̃bξ4,t−1)ζt

(by Beveridge-Nielson Decomposition, up to op(1))

=
1

4T

T∑
t=1

θ̃a[c′3ξt−1ζ
′
tc3 + c′4ξt−1ζ

′
tc4 −

−2∑
s=−3

ζ4t+sζ4t+s+2]

− 1

4T

T∑
t=1

θ̃b[c
′
3ξt−1ζ

′
tc4 − c′4ξt−1ζ′tc3 −

−1∑
s=−3

ζ4t+sζ4t+s+1 + ζ4t−3ζ4t]

⇒ 1

4
θ̃a[c′3Ψ̃(1)Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′Ψ̃(1)′c3

+c′4Ψ̃(1)Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′Ψ̃(1)′c4]

−1

4
θ̃b[c

′
3Ψ̃(1)Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′Ψ̃(1)′c4

−c′4Ψ̃(1)Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′Ψ̃(1)′c3]

(by Lemma 3 and FCLT, the covariances of ζt cancel out since {ζ̃t} is white noise)

=
1

4
θ̃a|ψ̃(i)|2[c′4Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c4 + c′3Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c3]

−1

4
θ̃b|ψ̃(i)|2[c′3Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c4 − c′4Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c3]

(since c′3Ψ̃(1) = ψ̃bc
′
4 + ψ̃ac

′
3, c

′
4Ψ̃(1) = ψ̃ac

′
4 − ψ̃bc′3, and ψ̃2

a + ψ̃2
b = |ψ̃(i)|2).

Similarly,

1

4T

4T∑
t=1

Y4,t−1ζt

=
1

4
θ̃b|ψ̃(i)|2[c′4Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c4 + c′3Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c3]

+
1

4
θ̃a|ψ̃(i)|2[c′3Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c4 − c′4Θ(1)Ω1/2

∫
W dW ′Ω1/2Θ(1)′c3]

The lemma follows from |ψ̃(i)|2 = |θ̃(i)|−2 and (Osborn, 1991)

V ar(ζ̃t)|θ̃(i)|2 =
1

4
(c′4Θ(1)ΩΘ(1)′c4 + c′3Θ(1)ΩΘ(1)′c3).

Now we come to the asymptotic distribution of the t-statistics and the F-statistics. Notice,

ti = σ̂−1[[(X ′X)−1]ii]
−1/2[(X ′X)−1X ′ζ(k)]i
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= σ̂−1[[[(4T − k)−2(X ′X)−1]ii]
−1/2 − [[R−1]ii]

−1/2](4T − k)[(X ′X)−1X ′ζ(k)]i

+σ̂−1[[R−1]ii]
−1/2((4T − k)(X ′X)−1X ′ζ(k) −R−1(4T − k)−1X ′ζ)i

+σ̂−1[[R−1]ii]
−1/2(R−1(4T − k)−1X ′ζ)i

= σ̂−1[[R−1]ii]
−1/2(R−1(4T − k)−1X ′ζ)i + op(1).

By the consistency of β̂, we have σ̂2 p→ V ar(ζ̃t). The asymptotic distributions of the t-statistics
follows straightforwardly from Lemma 5. Further, the asymptotic distributions of the F-statistics
are identical with the asymptotic distributions of the averages of the squares of the corresponding
t-statistics because of the asymptotic orthogonality of the regression. Hence, the proof of Theorem
3.1 is complete.

7.3 Proof of Theorem 3.2.

Define {it} and {It} such that ε?t = ε̌it and ε?4t+s = ε̌4It+s. By Algorithm 3.1, {it} is a sequence of
independent but not identical random variables, while {It} is a sequence of iid random variables.
Recall

(1− L4)Y4t+s =

4∑
j=1

πj,sYj,4t+s−1 +

k∑
i=1

φi,s(1− L4)Y4t+s−i + e4t+s,

where {e4t+s} is the regression error. Let

υ
(1)
T,t = (eit − E◦eit)/Std◦(eit)

υ
(2)
T,t = (−1)t(eit − E◦eit)/Std◦((−1)teit)

υ
(3)
T,t =

√
2 sin(

πt

2
)(eit − E◦eit)/Std◦(

√
2 sin(

πt

2
)eit)

υ
(4)
T,t =

√
2 cos(

πt

2
)(eit − E◦eit)/Std◦(

√
2 cos(

πt

2
)eit)

Let R?T be the partial sum of υT,t above. Formally,

R?T (u1, u2, u3, u4) = (
1√
4T

b4Tu1c∑
t=1

υ
(1)
T,t,

1√
4T

b4Tu2c∑
t=1

υ
(2)
T,t,

1√
4T

b4Tu3c∑
t=1

υ
(3)
T,t,

1√
4T

b4Tu4c∑
t=1

υ
(4)
T,t)
′.

To justify theorem 3.2, it suffices to show

‖S?T −R?T ‖
p→ 0 uniformly in u1, u2, u3 and u4, (7.8)

and R?T ⇒W in probability, (7.9)

because the unconditional convergence in (7.8) implies that in probability the conditional distribution
of ‖S?T − R?T ‖ given {Y4t+s} converges to zero. To prove (7.8), we can without loss of generality
focus on the uniform convergence of the first coordinate, that is, uniformly in u1,

| 1√
4T

b4Tu1c∑
t=1

ε?t /σ
?
1 −

1√
4T

b4Tu1c∑
t=1

υ
(1)
T,t|

p→ 0. (7.10)
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Notice that uniformly in u1,

1√
4T

b4Tu1c∑
t=1

ε?t

=
1√
4T

0∑
s=−3

bTu1c∑
t=bk/4c+1

ε?4t+s + op(1)

=
1√
4T

0∑
s=−3

bTu1c∑
t=bk/4c+1

(ε̂4It+s −
1

T

T∑
t=bk/4c+1

ε̂4t+s) + op(1)

=
1√
4T

0∑
s=−3

bTu1c∑
t=bk/4c+1

(e4It+s −
1

T

T∑
t=bk/4c+1

e4t+s)

− 1√
4T

0∑
s=−3

bTu1c∑
t=bk/4c+1

4∑
j=1

(π̂j,s − πj,s)(Yj,4It+s−1 −
1

T

T∑
t=bk/4c+1

Yj,4t+s−1)

− 1√
4T

0∑
s=−3

bTu1c∑
t=bk/4c+1

k∑
i=1

(φ̂i,s − φi,s)((1− L4)Y4It+s−j −
1

T

T∑
t=bk/4c+1

(1− L4)Y4t+s−j)

+ op(1)

=
1√
4T

0∑
s=−3

bTu1c∑
t=bk/4c+1

(e4It+s −
1

T

T∑
t=bk/4c+1

e4t+s)−BT (u1)− CT (u1) + op(1)

=
1√
4T

b4Tu1c∑
t=1

(eit − E◦eit)−BT (u1)− CT (u1) + op(1),

(7.11)

where BT (u1) and CT (u1) have obvious definitions. Now we show BT (u1)
p→ 0, and CT (u1)

p→ 0,
uniformly in u1.

For BT (u1), notice if πj,s 6= 0, then {Yj,4t+s} is weakly stationary, so π̂j,s − πj,s is Op(T
−1/2)

(see Berk, 1974), and it follows straightforwardly that BT (u1)
p→ 0 uniformly in u1. On the other

hand, if πj,s = 0, then by Theorem 3.1, π̂j,s − πj,s = Op(T
−1). Let

QT (u1) =
1√
4T

bTu1c∑
t=bk/4c+1

(Yj,4It+s−1 −
1

T

T∑
t=bk/4c+1

Yj,4t+s−1).

It suffices to show that sup0≤u1≤1QT (u1) = op(T ). By continuous mapping theorem, it suffices to
prove (4T )−1QT (·) ⇒ 0(·), where 0(·) ≡ 0. It is straightforward to show the weak convergence of
the finite dimensional distributions of (4T )−1QT (·). Furthermore, (4T )−1QT (·) is tight, since (see
Billingsley, 1999, Theorem 14.1) ∀r1 ≤ r ≤ r2,

E[(
QT (r2)

T
− QT (r)

T
)2(

QT (r)

T
− QT (r1)

T
)2]

=E[V ar◦[
QT (r2)

T
− QT (r)

T
]V ar◦[

QT (r)

T
− QT (r1)

T
]]→ 0.

(7.12)
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Hence (4T )−1QT (·) ⇒ 0(·), and BT (u1)
p→ 0 uniformly in u1 follows. For CT (u1), in light of the

derivation of Theorem 3.1, it can be shown that φ̂i,s − φi,s = Op(T
−1/2) holds not only under

alternative hypotheses but also under the null. Hence, it follows that uniformly in u1, CT (u1)
p→ 0.

Therefore, recalling (7.11), we have

1√
4T

b4Tu1c∑
t=1

ε?t −
1√
4T

b4Tu1c∑
t=1

(εit − E◦εit)
p→ 0.

Further, it is straightforward to show E[B2
T (1)]

p→ 0, and E[C2
T (1)]

p→ 0. Using the same decompo-

sition as in (7.11), σ?1 − Std◦(eit)
p→ 0. Hence we have proven (7.8).

Secondly we prove (7.9), Notice that the standard deviations in the definition of {υ(j)T,t} are
bounded in probability. For example,

Std◦(eit) = Std◦(e4It+s) = Std(e4t+s) + op(1) = Std(ε4t+s) + op(1),

Further, given {Y4t+s}, for fixed j = 1, ..., 4, υ
(j)
T,1, υ

(j)
T,2, ..., υ

(j)
T,T are conditionally iid random variables.

Finally, for all u ≥ 0,

V ar◦[
1√
4T

b4Tuc∑
m=1

υ
(j)
T,m]

p→ u,

Cov◦(
1√
4T

b4Tuc∑
m=1

υ
(j)
T,m,

1√
4T

b4Tuc∑
m=1

υ
(i)
T,m)

p→ 0 for i 6= j.

The convergence R?T of to W follows by generalizing (see Kreiss and Paparoditis, 2015) the real
world result of Helland (1982, Theorem 3.3) to the bootstrap world.

7.4 Proof of Theorem 4.2

Proof. Without loss of generality, assume block size b is a multiple of four. Let im = I(m−1)b+1.

Then the mth block of {V ∗t } starts from V̌im . Let υ
(j)
l,m be the rescaled aggregation of the mth block,

defined by

υ
(1)
l,m =

1√
b

b∑
h=1

(Vim+h−1 − E◦Vim+h−1)/Std◦(
1√
b

b∑
h=1

Vim+h−1)

υ
(2)
l,m =

1√
b

b∑
h=1

(−1)h(Vim+h−1 − E◦Vim+h−1)/Std◦(
1√
b

b∑
h=1

(−1)hVim+h−1)

υ
(3)
l,m =

1√
b

b∑
h=1

√
2 sin(

πh

2
)(Vim+h−1 − E◦Vim+h−1)/Std◦(

1√
b

b∑
h=1

√
2 sin(

πh

2
)Vim+h−1)

υ
(4)
l,m =

1√
b

b∑
h=1

√
2 cos(

πh

2
)(Vim+h−1 − E◦Vim+h−1)/Std◦(

1√
b

b∑
h=1

√
2 cos(

πh

2
)Vim+h−1)

Let R∗T be the partial sum of the block aggregations above. Formally,

R∗T (u1, u2, u3, u4) = (
1√
l

blu1c∑
m=1

υ
(1)
l,m,

1√
l

blu2c∑
m=1

υ
(2)
l,m,

1√
l

blu3c∑
m=1

υ
(3)
l,m,

1√
l

blu4c∑
m=1

υ
(4)
l,m)′
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To prove theorem 4.2, it suffices to show

‖S∗T −R∗T ‖
p→ 0 uniformly in u1, u2, u3 and u4, (7.13)

and R?T ⇒W in probability, (7.14)

where || · || denotes the L2 norm. To show (7.13), without loss of generality we focus on the uniform

convergence of the first coordinate, that is, uniformly in u1, | 1√
4T

∑b4Tu1c
t=1 V ∗t /σ

∗
1− 1√

l

∑blu1c
m=1 υ

(1)
l,m|

p→
0. Notice that,

1√
4T

b4Tu1c∑
t=1

V ∗t =
1√
4T

M(u1)∑
m=1

Bm∑
h=1

V̌im+h−1

=
1√
4T

M(u1)∑
m=1

b∑
h=1

V̌im+h−1 −
1√
4T

b∑
h=BM(u1)+1

V̌iM(u1)+h−1

(7.15)

where M(u1) = db4Tu1c/be denotes the total number of the blocks, and Bm = min(b, b4Tu1c −
(m− 1)b) is the length of the mth block. It suffices to only consider the first term in (7.15), since

sup
0≤u1≤1

| 1√
4T

b∑
h=BM(u1)+1

V̌iM(u1)+h| = Op(
1√
l

ln l).

By the definition of V̌t,

1√
4T

M(u1)∑
m=1

b∑
h=1

V̌im+h−1

=
1√
4T

M(u1)∑
m=1

0∑
s=−3

b/4∑
t=1

(Vim+4t+s−1 −
1

T

T∑
t=1

V4t+s)

−
4∑
j=1

0∑
s=−3

(π̂j,s − πj,s)
1√
4T

M(u1)∑
m=1

b/4∑
t=1

(Yj,im+4t+s−1 −
1

T

T∑
t=1

Y4t+s).

Now we show the second term on the right hand side of the equation above converges uniformly in
u1 to 0 in probability. Here we only present the result for j=1, s=0. Notice if π1,s 6= 0 for some s,
then (π̂1,0 − π1,0) = op(1). Hence, the result follows the weakly stationarity of the vector sequence
{Yt}. On the other hand, if π1,s = 0 for all s, then (π̂1,0 − π1,0) = Op(T

−1). Hence, we only need
to show that

QT (u)
def
=

1√
4T

M(u1)∑
m=1

b/4∑
t=1

(Y1,im+4t−1 −
1

T

T∑
t=1

Y4t)

has QT (·)
T ⇒ 0(·), where 0(u1) ≡ 0. The convergence of finite dimensional distribution of QT (·)

T can
be proven by the line of Politis and Paparaditis (2003, p. 841). Furthermore, it can be shown that
QT (·)
T is tight using (7.12). Hence QT (·)

T ⇒ 0(·). Therefore,

| 1√
4T

M(u1)∑
m=1

b∑
h=1

V̌im+h−1 −
1√
4T

M(u1)∑
m=1

0∑
s=−3

b/4∑
t=1

(Vim+4t+s−1 −
1

T

T∑
t=1

V4t+s)|
p→ 0
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uniformly in u1. Since it is straightforward to show

| 1√
4T

M(u1)∑
m=1

0∑
s=−3

b/4∑
t=1

(Vim+4t+s−1 −
1

T

T∑
t=1

V4t+s)−
1√
4T

M(u1)∑
m=1

b∑
h=1

(Vim+h−1 − E◦[Vim+h−1])| p→ 0

uniformly in u1, and

| 1√
4T

M(u1)∑
m=1

b∑
h=1

(Vim+h−1 − E◦[Vim+h−1])− 1√
4T

blu1c∑
m=1

b∑
h=1

(Vim+h−1 − E◦[Vim+h−1])| p→ 0

uniformly in u1, we have obtained that

| 1√
4T

b4Tu1c∑
t=1

V ∗t −
1√
4T

blu1c∑
m=1

b∑
h=1

(Vim+h−1 − E◦[Vim+h−1])| p→ 0 (7.16)

uniformly in u1. Now we show that V ar◦[ 1√
4T

∑4T
t=1 V

∗
t ]− V ar◦[ 1√

b

∑b
h=1 Vim+h−1]

p→ 0. Notice,

1√
4T

4T∑
t=1

V ∗t =
1√
4T

l∑
m=1

b∑
h=1

V̂im+h−1

=
1√
4T

l∑
m=1

0∑
s=−3

b/4∑
t=1

(Vim+4t+s−1 −
1

T

T∑
t=1

V4t+s)

−
4∑
j=1

0∑
s=−3

(π̂j,s − πj,s)
1√
4T

l∑
m=1

b/4∑
t=1

(Yj,im+4t+s−1 −
1

T

T∑
t=1

Y4t+s)

=
1√
4T

l∑
m=1

b∑
h=1

(Vim+h−1 − E◦[Vim+h−1]) +
1√
4T

l∑
m=1

0∑
s=−3

b/4∑
t=1

(E◦Vim+4t+s−1 −
1

T

T∑
t=1

V4t+s)

−
4∑
j=1

0∑
s=−3

(π̂j,s − πj,s)
1√
4T

l∑
m=1

b/4∑
t=1

(j, Yim+4t+s−1 −
1

T

T∑
t=1

Y4t+s)

= AT +BT −
4∑
j=1

CT,j

where AT , BT and CT,j , j = 1, ..., 4 have obvious definitions. It is straightforward to show E◦[B2
T ]

p→
0, E◦[C2

T,j ]
p→ 0 for j = 1, ..., 4, and V ar◦[AT ] = V ar◦[ 1√

b

∑b
h=1 Vim+h−1]. Hence, we have

V ar◦[
1√
4T

4T∑
t=1

V ∗t ]− V ar◦[ 1√
b

b∑
h=1

Vim+h−1]
p→ 0. (7.17)

By (7.16) and (7.17), we have shown

| 1√
4T

blu1c∑
t=1

V ∗t /σ
∗
1 −

blu1c∑
m=1

υ
(1)
l,m|

p→ 0
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uniformly in u1, and thus ‖S∗T −R∗T ‖
p→ 0 uniformly in u1, u2, u3 and u4.

Secondly we prove (7.14). Given assumption B.1, it is sufficient to show that the following three
properties hold:

bluc∑
m=1

E◦[υ
(i)2

l,m ]
p→ u, ∀u ≥ 0, and ∀ i = 1, ..., 4, (7.18)

bluc∑
m=1

E◦[υ
(i)2

l,m 1(|υl,m| > ε)]
p→ 0, ∀u ≥ 0, ∀ i = 1, ..., 4, (7.19)

bluc∑
m=1

E◦[υ
(i)
l,mυ

(j)
l,m]

p→ 0, ∀u ≥ 0, ∀ i, j ∈ {1, 2, 3, 4}, i 6= j. (7.20)

Helland (1982) shows that if {υl,m} is a martingale difference array and the above three properties

hold in real world, then
∑bluc
m=1 υl,m ⇒ W (u). By Beveridge-Neilson Decomposition (Hamilton,

1994, Proposition 17.2), Helland’s result can be generalized to the case when {υl,m} is a convolution
of a constant array and a martingale difference array. Further, Helland’s result can be generalized to
the bootstrap world (see Kreiss and Paparoditis, 2015). Hence the sufficiency of the three properties
above.

To verify (7.18) and (7.19), notice that ∀t ≥ 0, i = 1, ..., 4,

bltc∑
m=1

E◦[υ
(i)2

l,m ] = bltc/l→ t,

and, by the dominated convergence theorem,

bltc∑
m=1

E◦[υ
(i)2

l,m 1(|υl,m| > ε)]
p→ 0.

Hence, it remains to verify the (7.20), which indicates asymptotic independence between coordinates
of R∗T . Note that the third property need to be proved for all i, j ∈ {1, 2, 3, 4}, i 6= j. Here we cite
as an example the case i = 1 and j = 3. The rest of cases can be shown by similar calculations.
Notice,

bltc∑
m=1

E◦[υ
(1)
l,mυ

(3)
l,m] =

E◦[ 1√
b

∑b
h=1 Vi1+h−1

1√
b

∑b
r=1

√
2 sin(πr/2)Vi1+r−1]

Std◦[ 1√
b

∑b
h=1 Vi1+h−1]Std◦[ 1√

b

∑b
r=1

√
2 sin(πr/2)Vi1+r−1]

−
E◦[ 1√

b

∑b
h=1 Vi1+h−1]E◦[ 1√

b

∑b
r=1

√
2 sin(πr/2)Vi1+r−1]

Std◦[ 1√
b

∑b
h=1 Vi1+h−1]Std◦[ 1√

b

∑b
r=1

√
2 sin(πr/2)Vi1+r−1]

.

Since

E◦[
1√
b

b∑
h=1

Vi1+h−1]
p→ 0, E◦[

1√
b

b∑
r=1

√
2 sin(πr/2)Vi1+r−1]

p→ 0,

and both Std◦[ 1√
b

∑b
h=1 Vi1+h−1] and Std◦[ 1√

b

∑b
r=1

√
2 sin(πr/2)Vi1+r−1] converge in probability

to constants (Dudek et al., 2014), we only need to show that

E◦[
1√
b

b∑
h=1

Vi1+h−1
1√
b

b∑
r=1

√
2 sin(πr/2)Vi1+r−1]

p→ 0.
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Notice,

E◦[
1√
b

b∑
h=1

Vi1+h−1
1√
b

b∑
r=1

√
2 sin(πr/2)Vi1+r−1]

=

√
2

b(T − b/4)

T−b/4∑
i=1

b∑
h=1

b∑
r=1

sin(πr/2)V4i+h−4V4i+r−4

= −A+B + op(1),

where

A =

√
2

b(T − b/4)

b/4∑
h=1

T−b/4∑
j=1

V4j−3V4j+4h−6,

B =

√
2

b(T − b/4)

b/4∑
h=1

T−b/4∑
j=1

V4j−3V4j+4h−4.

The proof under Assumption 1.B is complete after showing

A
p→ 0, B

p→ 0. (7.21)

by the lemma 6 below. Now consider Assumption 2.B. Let υl,m = (υ
(1)
l,m, υ

(2)
l,m, υ

(3)
l,m, υ

(4)
l,m)′. Let

(λl,1,λl,2,λl,3,λl,4)′ be the eigenvalues of V ar
∑l
m=1 υl,m. It is sufficient (Wooldridge and White,

1988, Corollary 4.2) to show that the following two properties hold:

E◦(
1√
l

bltc∑
m=1

υ
(i)
l,m)(

1√
l

bltc∑
m=1

υ
(j)
l,m)

p→ t1{i = j}, ∀t ≥ 0,∀ i, j, (7.22)

(λ−1l,1 , λ
−1
l,2 , λ

−1
l,3 , λ

−1
l,4 ) = O(l−1). (7.23)

Notice, to show (7.22), it suffices to show (7.21), which is already ensured by Lemma 4 and Lemma
6. Equation (7.23) follows from the continuity of the eigenvalue function. Hence we have completed
the proof when block size b is a multiple of four.

When b is not a multiple of four, it is straightforward to show (7.13). For (7.14), let

R∗T,s = (
1√
l/4

bblu1c/4c∑
k=1

υ
(1)
l,4k+s,

1√
l/4

bblu2c/4c∑
k=1

υ
(2)
l,4k+s,

1√
l/4

bblu3c/4c∑
k=1

υ
(3)
l,4k+s,

1√
l/4

bblu4c/4c∑
k=1

υ
(4)
l,4k+s)

′.

Since {R∗T,s, s = −3, ..., 0} are mutually independent with respect to P ◦, and R∗T,s ⇒W in proba-

bility for all s = −3, ..., 0, we have R∗T = 1
2

∑0
s=−3R

∗
T,s + op(1)⇒W in probability.

Lemma 6. Suppose (i) {zt}nt=1 is a fourth-order stationary time series with finite 4 + δ moment for
some δ > 0. (ii) ∃K > 0, ∀ i, j, k, and l,

∑∞
h=−∞ |Cov(zizj , zk−hzl−h)| < K. Suppose b→∞ and

n→∞. Then,

V ar[
1

bn

n∑
t=1

b∑
j=1

ztzt−j ]→ 0.
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Proof.

V ar[
1

bn

n∑
t=1

b∑
j=1

ztzt−j ]

=
1

b2n2

n∑
t1=1

n∑
t2=1

b∑
j1=1

b∑
j2=1

cov[z0z−j1 , zt2−t1zt2−t1−j1 ]

=
1

b2n2

n−1∑
h=1−n

(n− |h|)
b∑

j1=1

b∑
j2=1

cov[z0z−j1 , zhzh−j1 ]

<
K

n
→ 0.
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