Skip to main content
eScholarship
Open Access Publications from the University of California

A Note on Conservative Mixing: Implications for Selecting Salinity-Transport Model Constituents in the San Francisco Estuary

Abstract

The deviation of specific electrical conductance (EC) from conservative mixing behavior is well-established in the scientific literature. This principle is based on the observation that, as salt concentration in a water sample increases, the mobility of individual ions in the sample decreases, and thus their ability to conduct electricity decreases. Despite this fact, some commonly used models for salinity transport in the San Francisco Estuary (estuary) utilize EC as a primary simulation constituent, treating it as a conservative quantity. Such a modeling approach has likely been followed to exploit the wide availability of EC data for model calibration and validation, and to obviate the need to translate between EC and salinity in a domain characterized by multiple source waters with varying ionic make-ups. Arguably, this approach provides a reasonable trade-off between data translation error and model simulation error. In this paper, we critically evaluate this approach, employing an extensive salinity data set that includes measurements of EC and major ion concentrations in the estuary. We demonstrate and quantify EC deviation from steady-state, conservative mixing behavior; review the conservative mixing behavior of three bulk salinity measures (practical salinity, ionic strength, and limiting equivalent conductance); and evaluate their source-dependent correlations with EC in the estuary. We find limiting equivalent conductance—a value that assumes uninhibited mobility among individual ions in a water sample—to be an attractive alternative for salinity transport in the estuary. In addition to being a conservative quantity, it is consistently correlated with EC in the estuary’s dominant source waters, and thus addresses concerns related to data-translation error. We conclude this paper discussing pros and cons of adopting various salinity-transport model constituents.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View