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Abstract

Regional climate change studies usually rely on downscaling of global climate model (GCM)

output in order to resolve important fine-scale features and processes that govern local climate.

Previous efforts have used one of two techniques: (1) dynamical downscaling, in which a regional

climate model is forced at the boundaries by GCM output, or (2) statistical downscaling, which

employs historical empirical relationships to go from coarse to fine resolution. Studies using these

methods have been criticized because they either dynamical downscaled only a few GCMs, or used

statistical downscaling on an ensemble of GCMs, but missed important dynamical effects in the

climate change signal. This study describes the development and evaluation of a hybrid dynamical-

statstical downscaling method that utilizes aspects of both dynamical and statistical downscaling

to address these concerns. The first step of the hybrid method is to use dynamical downscaling

to understand the most important physical processes that contribute to the climate change signal

in the region of interest. Then a statistical model is built based on the patterns and relationships

identified from dynamical downscaling. This statistical model can be used to downscale an entire

ensemble of GCMs quickly and efficiently. The hybrid method is first applied to a domain covering

Los Angeles Region to generate projections of temperature change between the 2041-2060 and
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1981-2000 periods for 32 CMIP5 GCMs. The hybrid method is also applied to a larger region

covering all of California and the adjacent ocean. The hybrid method works well in both areas,

primarily because a single feature, the land-sea contrast in the warming, controls the overwhelming

majority of the spatial detail. Finally, the dynamically downscaled temperature change patterns

are compared to those produced by two commonly-used statistical methods, BCSD and BCCA.

Results show that dynamical downscaling recovers important spatial features that the statistical

methods miss. This confirms that the dynamical downscaling provides a more credible fine-scale

signal for use in the hybrid method.
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1 Research Overview

The overarching goal of this work is to improve projections of regional climate change.

Typically, global climate models (GCMs) are the tools of choice for simulating climate change

on a global scale. Unfortunately, these models have horizontal resolutions on the order of

1◦- 2◦(∼ 100 - 200 km), which prevent them from being able to resolve important physical

features and processes that take place on smaller spatial scales (Giorgi and Mearns 1991,

Leung et al. 2003). Therefore downscaling techniques have been developed to determine

how the large-scale climate change signals in these GCMs are expressed on finer scales. This

work looks to evaluate and improve these downscaling techniques in order to make more

accurate projections of climate change at the regional scale.

Chapter 2 concerns the development of a new downscaling technique applied to the

Los Angeles Region. Previous studies making regional climate change projections have either

employed dynamical or statistical downscaling. Under dynamical downscaling, a regional

climate model is forced at the boundaries by GCM data and run at high resolution in order

to generate baseline and future data sets. Dynamical downscaling is often used because

it produces a physically-consistent, complete set of variables. However, it takes significant

computational resources, limiting studies to only a handful of GCMs (e.g. Duffy et al. 2006,

Pierec et al. 2013). This prevents full sampling of the range of possible outcomes represented

by the entire ensemble of GCMs, and the multiple emission scenarios or time periods that

can be used. In order to downscale multiple GCMs, scenarios, and time periods, statistical

downscaling is often used, since it exploits mathematical relationships between large-scale

predictors and small-scale predictands, that are relatively computationally inexpensive to

apply. However, statistical methods may miss important climate change features (Salathé et

al. 2010). (This is a topic explored further in Chapter 4.) The hybrid downscaling method

overcomes these obstacles by combining the ability of dynamical downscaling to capture fine-

scale dynamics with the computational savings of a statistical model. Previously, dynamical

and statistical downscaling techniques were only applied separately. Here, dynamical down-
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scaling is used to inform a simple, region-specific statistical model that incorporates only

the most important processes creating the fine-scale climate change pattern. The hybrid

technique accomplishes two important goals: (1) it allows for downscaling of multiple GCMs

for multiple time periods and scenarios, which are required to make probabilistic estimates

of most-likely outcomes and uncertainty, (2) it captures the dominant physical processes as

identified by dynamical downscaling, leading to enhanced credibility.

In Chapter 3, the new hybrid downscaling technique is applied to a different domain,

one encompassing the entire state of California and the adjacent ocean. The goal here is to

evaluate how well this technique works in a an alternate location and identify any modifica-

tions the could be made. In the Los Angeles Region, the fine-scale climate change pattern

for temperature was characterized to a high degree of accuracy by just two factors: the

regional mean temperature change and the difference between the land and ocean tempera-

ture change (the land-sea contrast in the warming). The full California domain also contains

both ocean and land areas, leading to the hypothesis that the regional mean warming and

the land-sea warming contrast would again be the two most important factors. Our results

supported this hypothesis, with principal component analysis (PCA) showing that once the

regional mean had been removed the first principal component (accounting for 89% of the

spatial variance) had a clear land-sea warming dipole. This lead us to wonder if the first

principal component would change if the ocean grid cells were removed before PCA were

performed. Perhaps another feature besides land-sea contrast would be revealed as more

important if only California’s land areas were considered. Interestingly, our results showed

that the spatial pattern of the first principal component was a nearly identical over land

(r = 0.99), regardless of whether the ocean was included in PCA. Not only did the tech-

nique work successfully over this domain, it confirmed that the land-sea contrast in the

warming was the dominant spatial pattern.

When the hybrid method was applied to the full California domain, some modifica-

tions were to the method itself were made. Most notably, a Monte-Carlo cross-validation
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procedure was implemented to (a) diagnose the sensitivity of the hybrid statistical model

parameters to the GCMs included in its training, and (b) evaluate the ability of the sta-

tistical model to predict the temperature change patterns for months or GCMs that were

not included in its training data. When compared with the more näıve method of linear

interpolation, the statistical model shows gains over land areas. The statistical model and

linear interpolation both do very well over the ocean, where there is much less complexity

to the warming pattern. The results of this chapter suggest that the hybrid downscaling

method could be widely applicable, and is likely to particularly effective in regions where a

single dominant factor provides spatial heterogeneity in the climate change pattern.

The hybrid method relies on dynamical downscaling (with WRF) to obtain the appro-

priate climate change patterns. Chapter 4 investigates how WRF’s regional climate change

projections differ from other downscaling methods. Temperature change patterns produced

by dynamical downscaling are compared to those produced by two commonly used statisti-

cal downscaling techniques, Bias Correction with Spatial Disaggregation (BCSD) and Bias

Correction with Constructed Analogs (BCCA). Surprisingly, even though BCSD produces

realistic fine-scale spatial detail in both historical and future climate simulations, it has

no spatial detail in the climate change signal (calculated by differing future and histori-

cal simulations). This is an important finding, since the high-resolution of the future and

historical projections may mislead users into believing that the climate change signal con-

tained in the data is also high-resolution. In fact, the climate change signal that BCSD

produces is identical to the bias-corrected, regridded GCM. Therefore BCSD cannot capture

any of the important spatial details. On the other hand, BCCA has the capacity to produce

meaningful spatial detail. BCCA warming projections have pronounced land-sea contrast,

although the exact locations and magnitudes of the features differ from WRF. While both

methods capture the land-sea contrast to some extent, they produce very different results in

the mountains, where the BCCA warming shows no signs of snow-albedo feedback. Snow-

albedo feedback is understood to be an important part of the local climate change response,
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in which reductions in snow cover (and, to a lesser extent, snow albedo) lead to increases in

absorbed downward solar radiation, further enhancing the warming (Giorgi et al. 1997, Qu

and Hall 2007). The magnitude of this enhancement is shown to vary from 2 ◦C to 7 ◦C per

100% snow loss (fully snow-covered to snow-free), depending on the month. Because BCCA

uses daily historical analogs to simulate future temperatures, it inherently underestimates

the snow-cover loss associated with climate change by up to a factor of five. Based on this

investigation, we conclude that WRF captures important, physical details that may not be

captured by common statistical downscaling methods. We also suggest potential ways to

ensure that the warming enhancement due to snow-albedo feedback is properly included in

statistically downscaled warming patterns.
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2 Development of a Hybrid Dynamical-Statistical Down-

scaling Method and its Application to the Los Angeles

Region

2.1 Introduction

To make informed adaptation and mitigation decisions, policymakers and other stakeholders

need future climate projections at the regional scale that provide robust information about

most likely outcomes and uncertainty estimates (Mearns et al. 2001, Leung et al. 2003,

Schiermeier 2010, Kerr 2011). The main tools available for such projections are ensembles of

global climate models (GCMs). However, GCMs have grid box scales of 1◦ to 2◦ (∼ 100 – 200

km), often too coarse to resolve important topographical features and mesoscale processes

that govern local climate (Giorgi and Mearns 1991, Leung et al. 2003, Caldwell et al. 2009,

Arritt and Rummukainen 2011). The inability of GCMs to provide robust predictions at

scales small enough for stakeholder purposes has motivated numerous efforts to regionalize

GCM climate change signals through a variety of downscaling methods (e.g. Giorgi et al.

1994, Snyder et al. 2002, Timbal et al. 2003, Hayhoe et al. 2004, Leung et al. 2004,

Tebaldi et al. 2005, Duffy et al. 2006, Cabré et al. 2010, Salathé et al. 2010, Pierce

et al. 2013). The aim of this study is to develop downscaling techniques to recover the

full complement of warming signals in the Greater Los Angeles Region associated with the

multi-model ensemble from the World Climate Research Programme’s Fifth Coupled Model

Intercomparison Project (CMIP5; Taylor et al. 2012; Table 2.1).

Regional downscaling attempts have been met with significant criticism (e.g., Schier-

meier 2010, Kerr 2011, 2013). One major critique is that the downscaled output is con-

strained by the limitations of the GCM input. By itself, any single GCM may give a

misleading picture of the true state of knowledge about climate change, including in the

region of interest. Results from downscaling this single GCM will likewise be misleading.
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Furthermore, the high resolution and realistic appearance of the downscaled results may give

a false impression of accuracy. This perception of accuracy at the regional scale is especially

problematic if a very small number of GCMs are downscaled, since the uncertainty is dra-

matically undersampled. In this case, the downscaled output may not reflect the most likely

climate outcomes in the region, and it certainly does not provide information about how the

uncertainty associated with the GCM ensemble manifests itself at the regional scale. Typ-

ically, previous studies have downscaled only two global models (e.g., Hayhoe et al. 2004,

Duffy et al. 2006, Cayan et al. 2008, Salathé et al. 2010). This is too small an ensemble

to obtain meaningful statistics about the most likely (ensemble-mean) warming and uncer-

tainty (inter-model spread). Instead, information from a larger ensemble is preferred (Georgi

and Mearns 2002, Kharin and Zwiers 2002). The CMIP3 and CMIP5 ensembles (Meehl et

al. 2007; Taylor et al. 2012), with a few dozen ensemble members, are usually seen as large

enough to compute a meaningful ensemble-mean and span the climate change uncertainty

space.

While downscaling of a large ensemble is desirable to compute most likely outcomes

and fully characterize uncertainty, this can be impractical because of the high computational

cost. Dynamical downscaling, in particular, is an expensive technique, and most studies that

perform it have only applied it to a few global models. For example, Duffy et al. (2006)

downscaled PCM and HadCM2 over the western United States, and Pierce et al. (2013)

downscaled GFDL CM2.1 and NCAR CCSM3 over California. There are other examples of

dynamical downscaling of multiple GCMs, such as the Coordinated Regional Downscaling

Experiment (CORDEX; Giorgi et al. 2009), but these are very large undertakings that

require coordination of multiple research groups. Furthermore, they tend to span large

geographic areas at lower resolutions (roughly 50 km) than needed for the region of interest

here. Areas of intense topography and complex coastlines typically need a model resolution

finer than 10–15 km (Mass et al. 2002). The Los Angeles Region contains minor mountain

complexes, such as the Santa Monica Mountains, that have a significant role in shaping local
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climate gradients. These mountain complexes have spatial scales of just a few kilometers, so

even higher resolution, with correspondingly higher computational costs, would be needed

here. Thus, for the purposes of this study, dynamical downscaling alone is an impractical

answer to the need for multi-model downscaling. Due to its much lower computational cost,

statistical downscaling is almost always used for multi-model downscaling (e.g., Giorgi et

al. 2001, Tebaldi et al. 2005, Pierce et al. 2013). Unfortunately, statistical methods may

not be able to capture important fine-scale changes in climate shaped by topography and

mesoscale dynamics. Dynamical downscaling can capture such effects, provided the regional

model resolution is high enough (e.g. Caldwell et al. 2009, Salathé et al. 2010, Arritt and

Rummukainen 2011, Pierce et al. 2013). Pierce et al. (2013) found that when a pair of global

model was dynamically downscaled, the average difference in the annual warming between

the Southern California mountains and coast was twice that of two common statistical

downscaling techniques. This suggests that statistical downscaling alone may be insufficient

in order to capture sharp gradients in temperature change in our region of interest.

Here we provide a hybrid downscaling technique that allows us to fully sample the

GCM ensemble with the physical credibility of dynamical downscaling but without the heavy

computational burden of dynamically downscaling every GCM. In this technique, dynamical

downscaling is first performed on five GCMs. Then, the results from dynamical downscaling

are used to identify the most important fine-scale warming features and how they relate to the

major GCM-scale warming features. Based on these relationships, a simple statistical model

is built to mimic the warming patterns produced by the dynamical model. In the statistical

model, the fine-scale warming patterns are dialed up or down to reflect the regional-scale

warming found in the particular GCM being downscaled. While scaling of regional climate

change patterns has been around since Mitchell et al. (1990) and Santer et al. (1990), the

scaling has primarily been relative to the global-mean warming and only within a single GCM

(e.g. Cabré et al. 2010). The statistical model described here is more versatile because (1) it

works for any GCM, not just those that have already been dynamically downscaled; (2) the
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downscaled warming is dependent on the GCM’s regional mean warming characteristics, not

the global mean warming; and (3) this dependence is allowed multiple degrees of freedom,

based on the physical processes at play in this particular region.

The construction of a statistical model that mimics dynamical model behavior forces

us to understand the physical mechanisms underpinning the regional patterns of change,

adding an additional layer of credibility to the results. This addresses another concern

about regional downscaling, namely that it is difficult to determine if the regional climate

change patterns are credible even if they appear realistic and visually appealing, because

the dynamics underpinning them are unclear, undiagnosed, or unknown.

The hybrid method is used to generate the warming patterns for 32 GCMs in the

CMIP5 ensemble. These patterns represent our best estimate of what the warming would

be if dynamical downscaling had been performed on these remaining GCMs.

2.2 Dynamical Downscaling

2.2.1 Model Configuration

Dynamical downscaling was performed using the Advanced Research Weather Research and

Forecasting Model version 3.2 (WRF; Skamarock et al. 2008). WRF has been successfully

applied to the California region in previous work (e.g. Caldwell 2009, Pierce et al. 2013).

For this study, we optimized it for the California region with sensitivity experiments using

various parameterizations, paying particular attention to the model’s ability to simulate low

cloud in the marine boundary layer off the California coast. The following parameterization

choices were made: Kain-Fritsch (new Eta) cumulus scheme (Kain 2004); Yonsei University

boundary layer scheme (Hong et al. 2006); Purdue Lin microphysics scheme (Lin et al. 1983);

Rapid Radiative Transfer Model longwave radiation (Mlawer et al. 1997); Dudhia shortwave

radiation schemes (Dudhia 1989). The Noah land surface model (Chen and Dudhia 2001) was

used to simulate land surface processes including vegetation, soil, snowpack and exchange

of energy, momentum and moisture between the land and atmosphere.
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Figure 2.1: (a) Model setup, with three nested WRF domains at resolutions of 18, 6, and 2 km.

Topography is shown in color (units: meters). (b) The innermost domain of the regional simulation,

with 2 km resolution. Topography is shown in meters. Black dots indicate the locations of the 24

stations used for surface air temperature validation.

The three nested domains for the simulations are shown in Fig. 2.1. The outer-

most domain covers the entire state of California and the adjacent ocean at a horizontal

resolution of 18 km, the middle domain covers roughly the southern half of the state at a

horizontal resolution of 6 km, and the innermost domain encompasses Los Angeles county

and surrounding regions at a horizontal resolution of 2 km. In each domain, all variables

in grid cells closer than five cells from the lateral boundary in the horizontal were relaxed

toward the corresponding values at the lateral boundaries. This procedure ensures smooth

transitions from one domain to another. Each domain has 43 sigma-levels in the vertical. To

provide a better representation of surface and boundary layer processes, the model’s vertical

resolution is enhanced near the surface, with 30 sigma-levels below 3 km.

2.2.2 Baseline Simulation and Validation

Using this model configuration, we performed a baseline simulation whose purpose is two-

fold: (1) to validate the model’s ability to simulate regional climate, and (2) to provide

9



a baseline climate state against which a future climate simulation could be compared, to

quantify the change in climate. This simulation is a dynamical downscaling of the National

Centers for Environmental Prediction North America Regional Reanalysis (NARR; Mesinger

et al. 2006) over the period September 1981 to August 2001. This dataset has 32-km

resolution and provides lateral boundary conditions at the outer boundaries of the outermost

domain (Fig. 2.1). It also provides surface boundary conditions over the ocean (i.e., sea

surface temperature) in each of the three domains. The simulation is designed to reconstruct

the regional weather and climate variations that occurred in the innermost domain during

this time period, at 2-km resolution. The model was reinitialized each year in August, and

run from September to August. Because each year was initialized separately, the time period

could be divided into one-year runs performed in parallel.

The regional model’s ability to reproduce climate variations during the baseline period

was assessed by comparing the output from the baseline climate simulation to the available

observational measurements from a network of 24 weather stations and buoys. These quality-

controlled, hourly, near-surface meteorological observations were obtained from the National

Climatic Data Center (NCDC; http://www.ncdc.noaa.gov/). The point measurements are

located in a variety of elevations and distances from the coast, and are numerous enough to

provide a sampling of the range of temperatures seen across the region (Fig. 2.1). However,

both the length and completeness of observational temperature records vary by location.

Most locations have reasonably complete records after 1995, so validation is performed over

the 1995–2001 period.

First, we check the realism of the spatial patterns seen in surface air temperature cli-

matology. Spatial patterns simulated by the model are highly consistent with observations,

as indicated by high correlations between observed and simulated temperatures within each

season (Fig. 2.2a). This confirms that for each season, the model simulates spatial varia-

tions in climatological temperature reasonably well. The spatial pattern is particularly well-

represented in summer and winter (r > 0.9 in both seasons), although the model exhibits
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Figure 2.2: Validation of WRF dynamical downscaling against a network of 24 stations, for the

period 1995-2001. (a) Simulated versus observed seasonal average climatological temperatures,

for each of station. (b) Correlations at each station between simulated and observed monthly

temperature anomalies. (Anomalies are relative to the composite monthly climatology.)

a slight cold bias in the summer. During the transition seasons, the model and observed

spatial patterns are still in broad agreement, with correlations greater than 0.7. The model’s

ability to simulate temporal variability on monthly timescales and longer is also assessed.

At each of the 24 locations, the correlation was computed between the observed and mod-

eled time series of monthly-mean temperature anomalies, after first removing a composite

seasonal cycle (Fig. 2.2b). Temporal variability is very well-simulated by the model, with

high correlations at all locations.

Fig. 2.2 demonstrates that the model gives approximately the right spatial and

temporal variations in surface air temperature at specific point locations where trustworthy

observational data are available. This gives a high degree of confidence that the model is also

producing the correct temperature variations in the rest of the region, where observations are

absent. And most importantly for this study, it gives confidence that when it comes to surface

air temperature, the model provides a realistic downscaling of the regional pattern implicit

in the coarser resolution forcing data set. Thus, the dynamically downscaled climate change
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patterns presented here are very likely a true reflection of how the atmosphere’s dynamics

would distribute the warming across the region if climate change signals seen in the global

models occurred in the real world.

2.2.3 Future Simulations

With the same model configuration as in the baseline simulation, we performed a second

set of dynamical downscaling experiments designed to simulate the regional climate state

corresponding to the mid–21st century. We applied the pseudo-global warming method

(PGW; see Rasmussen et al. 2011 and references therein; also Sato et al. 2007, Kawase

et al. 2009) to five GCMs in the CMIP5 ensemble corresponding to this time period and

the RCP8.5 emissions scenario (see Table 2.1). To simulate the future period, we started

by calculating the difference between future and baseline monthly climatologies (2041–2060

minus 1981–2000) for each GCM. These differences are the GCM climate change signals of

interest. All model variables are included in the calculation of the climate change signal

(i.e., 3-dimensional atmospheric variables such as temperature, relative humidity, zonal and

meridional winds, and geopotential height and 2-dimensional surface variables such as tem-

perature, relative humidity, winds and pressure). To produce the boundary conditions for the

future period, we perturbed NARR data corresponding to the baseline period (September

1981–August 2001) by adding the change in monthly climatology. The resulting simulation

can then be compared directly with the baseline regional simulation to assess the effect of

the GCM climate change signals when they are included in the downscaling. Because we

downscaled the mean climate change signal in each GCM rather than the raw GCM data,

we did not downscale changes in GCM variability. Thus, any future changes in variability in

the regional simulations are solely the result of WRF’s dynamical response to a shift in mean

climate. In addition to imposing a mean climate change perturbation at the lateral bound-

aries, CO2 concentrations were also increased in WRF to match the equivalent radiative

forcing in the RCP8.5 scenario.
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Table 2.1: Details of the WCRP CMIP5 global climate models used in this study.

MODEL COUNTRY INSTITUTE

ACCESS1.0 Australia
Commonwealth Scientific and

Industrial Research Organization

ACCESS1.3 Australia
Commonwealth Scientific and

Industrial Research Organization

BCC-CSM1.1 China
Beijing Climate Center,

China Meteorological Administration

BNU-ESM China
College of Global Change and Earth System Science,

Beijing Normal University
Can-ESM2 Canada Canadian Centre for Climate Modelling and Analysis

CCSM4 USA National Center for Atmospheric Research

CESM1(BGC) USA
National Science Foundation, Department of Energy,

National Center for Atmospheric Research

CESM1(CAM5) USA
National Science Foundation, Department of Energy,

National Center for Atmospheric Research

CESM1(WACCM) USA
National Science Foundation, Department of Energy,

National Center for Atmospheric Research

CMCC-CM Italy
Centro Euro-Mediterraneo per

I Cambiamenti Climatici
CNRM-CM5 France Centre National de Recherches Meteorologiques

CSIRO-Mk3.6.0 Australia
Commonwealth Scientific and

Industrial Research Organization
EC-EARTH Europe EC-Earth Consortium

FGOALS-s2 China
LASG, Institute of Atmospheric Physics,

Chinese Academy of Sciences
FIO-ESM China The First Institute of Oceanography

GFDL-CM3 USA NOAA Geophysical Fluid Dynamics Laboratory
GFDL-ESM2M USA NOAA Geophysical Fluid Dynamics Laboratory
GFDL-ESM2G USA NOAA Geophysical Fluid Dynamics Laboratory

GISS-E2-H USA NASA Goddard Institute for Space Studies
GISS-E2-R USA NASA Goddard Institute for Space Studies

HadGEM2-AO UK Met Office Hadley Centre
HadGEM2-CC UK Met Office Hadley Centre
HadGEM2-ES UK Met Office Hadley Centre

INMCM4 Russia Institute for Numerical Mathematics
IPSL-CM5A-LR France Institut Pierre Simon Laplace
IPSL-CM5A-MR France Institut Pierre Simon Laplace

MIROC-ESM Japan AORI (U. Tokyo), NIES, JAMESTEC
MIROC-ESM-CHEM Japan AORI (U. Tokyo), NIES, JAMESTEC

MIROC5 Japan AORI (U. Tokyo), NIES, JAMESTEC
MPI-ESM-LR Germany Max Planck Institute for Meteorology
MRI-CGCM3 Japan Meteorological Research Institute
NorESM1-M Norway Norwegian Climate Center

We first downscaled CCSM4 for a 20-year period and then performed sensitivity

testing to see if it was necessary to downscale such a long period to recover the regional tem-

perature change signal. (Using a shorter period when downscaling the other GCMs conserves

scarce computational resources.) Because we perturbed each year in the future period with
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the same monthly-varying change signal from CCSM4, we expected the warming patterns

for each year to be relatively similar. In fact, the warming patterns were nearly identical

each year: We could have dynamically downscaled only three years and recovered an aver-

age warming signal within 0.1 ◦C of the 20-year value. Therefore, the remaining four GCMs

were only downscaled for three years. For each of these GCMs, the boundary conditions for

the future run were created by adding the mean climate change signal (2041–2060 minus

1981–2000) from the GCM to the three-year period of NARR corresponding to September

1998–August 2001.

2.2.4 Warming Patterns

In this section, we examine monthly-mean warming patterns (future minus baseline) simu-

lated from dynamical downscaling. Fig. 2.3 shows these warming patterns averaged over the

five dynamically downscaled GCMs. There are two prominent features that can be under-

stood through underlying physical processes. First, the warming is greater over land than

ocean. This is true for all months, but the effect is particularly evident in the late spring,

summer, and early fall. Differences between warming over the ocean and land surfaces have

been well-documented in GCMs (Manabe et al. 1991; Cubasch et al. 2001; Braganza et al.

2003, 2004; Sutton et al. 2007; Lambert and Chiang 2007; Joshi et al. 2008; Dong et al.

2009; Fasullo et al. 2010) and the observational record (Sutton et al. 2007, Lambert and

Chiang 2007, Drost et al. 2011). Greater warming over land is evident on the continen-

tal scale in both transient and equilibrium climate change experiments due to greater heat

capacity and availability of moisture for evaporative heat loss over the ocean compared to

land (Manabe et al. 1991, Sutton et al. 2007, Joshi et al. 2008). Moisture availability is

particularly low in arid and semi-arid regions, including a large swath of the southwestern

United States adjacent to the Los Angeles Region.

Land-sea contrast in the warming is present on large scales in each global model’s

climate change signal, but how is this contrast expressed on the regional scale? Local
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Figure 2.3: Monthly-mean surface air temperature change (units:◦C) for the mid-century period

(2041-2060) relative to the baseline period (1981-2000) averaged over the five dynamically down-

scaled GCMs.

topography and the circulation simulated by WRF govern which areas have warming that

is more ocean-like or land-like. The land-sea breeze brings marine air and its characteristics

to the coastal zone on a daily basis (Hughes et al. 2007) which suppresses warming there,

keeping it at or near ocean levels. This suppression is limited to the coastal zone because

marine air masses cannot easily penetrate the surrounding mountain complexes. Meanwhile,

the inland areas (land areas separated from the coast by a mountain complex) are not exposed
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to marine air and have similar warming as interior land areas in the global models.

The second prominent feature is the enhanced warming at high elevations, which can

be seen by comparing the warming to the domain topography shown in Fig. 2.1. During

winter and spring months, snow-albedo feedback occurs in mountainous areas, a feature

also observed previously in California’s mountainous areas by Kim (2001). In a warmer

climate, reductions in snow cover result in an increase in absorbed solar radiation, which are

balanced, in part, by increased surface temperatures (Giorgi et al. 1997). Early in the year,

snow cover at elevations near the snow line is more sensitive to temperature changes than at

higher elevations. The decreased snow cover near the approximate snow line results in rings

of enhanced warming in March and April. In May and June, snow cover at all elevations

may be sensitive to temperature change, leading to larger warming extending all the way up

to the mountain peaks.

2.3 Statistical Downscaling

We constructed a statistical model to accurately and efficiently approximate the warming

patterns that would have been produced had dynamical downscaling been performed on

the remaining GCMs. The statistical model scales the dominant spatial pattern (identified

through principal component analysis of the dynamical warming patterns) and the regional

mean so they are consistent with the regionally averaged warming over the Los Angeles

region as well as the land-sea contrast in the warming.

2.3.1 Principal Component Analysis of Spatial Patterns

Principal component analysis (PCA) was performed on the 60 monthly warming patterns

(five models, each with 12 monthly warming patterns) with their regional means removed

(Fig. 2.4). Although PCA is typically applied to temporal anomalies to identify common

modes of variability relative to temporal mean, instead we perform PCA on the spatial

anomalies to find how warming at in the region differs from the regional average. The
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Figure 2.4: The spatial patterns associated with the three largest principal components, in descend-

ing order of size. PCA was performed on the monthly warming patterns from the five dynamically

downscaled models, with the monthly domain averages removed. PC1 accounts for 74% of the

variance. This component is referred to as the Coastal-Inland Pattern (CIP) because of its neg-

ative loadings over the coastal land areas and positive loadings inland. PCs 2 and 3 account for

13% and 5% of the variance, respectively.

leading principal component (PC1) explains 74% of the spatial variance. It is referred to as

the Coastal-Inland Pattern (CIP) henceforth because of its strong positive loadings inland

and negative loadings over the coastal zone and ocean. The second and third PCs (13%,

5% variance explained) may also represent important physical phenomena, but their roles

in shaping the warming patterns are much smaller, and we ignore them for the remainder

of this paper.

The CIP arises from local dynamics modulating the basic contrast in climate between

the land and ocean. These dynamics are apparent in other basic variables shaping the

region’s climate. For example, there is a very strong negative correlation (r = -0.97) between

the CIP and the baseline period annual-mean specific humidity (Fig. 2.5), a climate variable

that also exhibits a significant land-sea contrast in this region. This relationship arises

because the ocean is by far the most consistent source of water for evaporation in this

region. Air masses over the ocean are rapidly and continuously resupplied with water vapor
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as necessary to maintain high specific humidity levels. Meanwhile, dry air masses over the

desert interior remain cut off from moisture sources. In the coastal zone, land-sea breezes

and synoptically driven alternations of the onshore and offshore flow pattern (Conil and

Hall 2006) generally lead to intermediate moisture levels. Very similar dynamics mediate

the warming distribution, as described in Section 2.2.4, with relatively small warming over

the ocean, intermediate warming over the coastal zone, and larger warming inland. Thus

the CIP is an expression of local atmospheric circulation patterns endemic to the region.

Because the mechanisms that create the CIP are independent of the particular GCMs we

have chosen, we are confident that the CIP can be used to downscale other GCMs.

The CIP and the regional mean can be linearly combined to closely approximate the

dynamically downscaled warming patterns for each month and for each GCM. When linear

regression is used to calculate the combination of the regional mean and the CIP that is

closest to the dynamical warming pattern, the resulting approximate warming patterns have

RMSE within 0.19 ◦C of their dynamical counterparts, on average. (When we repeated this

calculation omitting the contribution of the CIP, the error more than doubled to 0.39◦C,

indicating the importance of including spatial variations.) Furthermore, at each point in the

domain, we calculated the correlation between the dynamically downscaled warming and

the linearly approximated warming. The domain average of these correlations is 0.98. This

confirms that we can capture nearly all variations in warming just by combining appropriate

scalings of the regional mean and the CIP. Therefore, we use these two factors as the basis

for our statistical model, as discussed in the next section.

2.3.2 Finding Optimal Sampling Locations

In order to statistically downscale each of the remaining GCMs in the CMIP5 ensemble, we

need to obtain approximate values of the regional mean and land-sea contrast, which we do

by sampling the large-scale warming. To find the optimal sample locations, we examined

the five GCMs we have dynamically downscaled and identified the points in the large-scale

18



!"#$%#&'()&#)*'+#%%,-)'./01'23

'

'

!4 !5 !6 7 6 5 4

.27
!8
'9':9

!2
3

;#$,&<),'=>,?<@<?'ABC<*<%D

'

'

22 27 E F G

(PC1) !"#$%#&'()&#)*'+#%%,-)'./01'23

'

'

!4 !5 !6 7 6 5 4

.27
!8
'9':9

!2
3

;#$,&<),'=>,?<@<?'ABC<*<%D

'

'

22 27 E F G

(a) (b) 

Figure 2.5: Coastal-Inland Pattern (left) and surface specific humidity climatology of the baseline

period (right; units: 10−3 g · kg−1). The two spatial patterns are highly correlated (r = -0.97).

domain that are best correlated with the dynamically downscaled regional mean and land-sea

contrast. Since the GCMs have different resolutions, we first interpolated the GCM monthly

warming patterns to a common grid (our outermost WRF grid, with 18 km resolution, Fig.

2.1). The highest correlations between the large-scale warming and the regional mean are

found over the adjacent ocean and along the coast (Fig. 2.6a). Since these correlations were

calculated using the monthly averages from each of the five GCMs, they indicate the degree to

which sampling at that location would capture both inter-monthly and inter-model variations

in the regional mean. If this exercise could be undertaken for all 32 GCMs in the ensemble,

the location of the optimal sampling point might be slightly different, due to variations in

resolution and grid placement between the GCMs. To build in a tolerance for such ensemble-

size effects, we sampled over a region encompassing the highest correlated points, rather than
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Figure 2.6: Correlations between GCM warming (interpolated to an 18-km grid) and the dy-

namically downscaled (a) regional mean warming and (b) land-sea contrast in the warming (i.e.

loadings associated with PC1). The sampled regional mean warming and inland warming are

calculated as averages over the warming in the black boxes in panels (a) and (b), respectively.

Panel (c) shows partial correlations between the interpolated GCM warming and the dynamically

downscaled land-sea contrast with the effect of the sampled inland warming removed. The ocean

warming is calculated as the average over the black box in (c).

just the best-correlated point. The GCM regional mean warming, ∆TGCM
RegMean, is calculated

as the average over all the points a rectangular region with longitude bounds [120.5◦W,

117.5◦W] and latitude bounds [32◦N, 34.5◦N] shown in Fig. 2.6a (black box).

A similar procedure was used to find the optimal locations to sample the land and the

ocean warming for calculation of the GCM land-sea contrast. The PC1 loadings (a proxy

for land-sea contrast) were correlated with the GCM warming interpolated to the com-

mon 18-km grid (Fig. 2.6b). The correlations are highest over the high desert of Southern

California and Southern Nevada, northeast of our 2-km domain. The GCM inland warm-

ing is calculated as the average warming over the rectangular area with longitude bounds

[118◦W, 113◦W] and latitude bounds [34◦N, 37.5◦N]. To find the location to sample the

ocean warming, we repeated this procedure, but using partial correlations with the effect of

inland warming removed (Fig. 2.6c). These partial correlations identify the optimal ocean

sampling location to use in conjunction with our previously selected inland location. The
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GCM ocean warming is calculated as the warming averaged over a rectangular area with

longitude bounds [120.5◦W, 117.5◦W] and latitude bounds [32◦N, 34◦N]. The GCM land-sea

contrast, is calculated as the GCM inland warming, ∆TGCM
Inland, minus the GCM ocean warm-

ing ∆TGCM
Ocean. If the procedure is reversed, and the optimal ocean location is selected before

the optimal inland location, they still end up in nearly identical spots.

2.3.3 Hybrid Statistical Model Formula

The statistical model approximates the dynamically downscaled warming as a linear com-

bination of the scaled regional mean warming in the GCM and the product of the GCM’s

land-sea contrast with the coastal-inland pattern. The prediction equation for the statisti-

cally downscaled warming is

∆T stat(i, j) = α + β∆TGCM
RegMean + γ(∆TGCM

Inland − ∆TGCM
Ocean) · CIP (i, j) (1)

where (i,j) are coordinates in the 2km grid and α, β, and γ are coefficients determined by lin-

ear regression (Fig. 2.7). The values of these coefficients are α = 0.14◦C, β = 1.10, γ = 1.03.

α is greater than 0, and β is slightly larger than one, which indicates that the dynamically

downscaled regional mean warming is shifted and scaled to a slightly larger value than the

sampled regional mean warming in the GCM. This reflects the fact that the GCM is sampled

over the ocean and coastal zone, while the dynamically downscaled region also encompasses

inland areas, which tend to warm more. The dynamically downscaled and GCM-sampled

land-sea contrasts are nearly the same, as their ratio is approximately one (γ = 1.03).

2.3.4 Validation of the Statistical Model

Cross-validation was performed to assess how accurately the statistical model replicates

the warming patterns produced by the dynamical model. The entire statistical model was

retrained on only four of the five GCMs, and then used to predict the warming of the remain-

ing GCM. This involved first redoing the PCA to find the CIP (PC1). (These alternative
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Figure 2.7: Dynamically downscaled regional-mean warming versus GCM-sampled regional-mean

warming (left), and the dynamically downscaled land-sea contrast (i.e. the PC1 loadings) versus

the GCM-sampled land-sea contrast (right). For each GCM (colors), the twelve monthly-mean

warming values are shown. Linear approximations used by the statistical model are shown as

black dashed lines.

patterns are nearly identical no matter which model is left out: The correlation between

any two is greater than 0.98. This is additional evidence for the robustness of this pattern

in regional warming.) Next, the optimal sampling locations were recalculated. They were

similarly located in each case. Finally, linear regression was performed to recalculate the

parameters α, β, and γ. Once the model was retrained, it was applied to the remaining

GCM. This procedure was performed five times in all, with each GCM taking a turn be-

ing omitted from calibration and used for testing. This cross-validation technique gives us

five sets of predicted warming patterns that are compared to their dynamical counterparts.

These warming patterns are also used later to assess value added.

The statistical model consistently reproduces the dynamically downscaled warming

pattern for the omitted GCM with a reasonable degree of accuracy (Fig. 2.8, rightmost

columns). The average spatial is correlation between the dynamically and statistically gen-

22



erated annual-mean patterns is 0.95. The average root mean squared error (RMSE) in the

annual-mean warming patterns is 0.28 ◦C over the five models. This error has to be viewed

in the context of the variations the statistical model is intended to capture. The range of the

five annual means averaged over the whole domain is 2.1◦C, about an order of magnitude

larger than the error. This error is small enough that substituting the statistical model out-

put for that of the dynamical model does not significantly affect the mean or spread of the

ensemble, two of the most important outcomes of a multi-model climate change study like

this one. The statistical model is slightly less accurate at reproducing the monthly warming

patterns (average RMSE is 0.39◦C) due to greater variety of spatial details in the monthly

patterns. Still, the error is an order of magnitude smaller than the range of the monthly-

mean regional-mean warming (3.5◦C). This gives additional confidence that the statistical

model can capture even the monthly warming patterns to a reasonable level of accuracy.

2.3.5 Value of Incorporating Dynamical Information

The goal of this study is to provide an ensemble of projections, as if all 32 GCMs had

been dynamically downscaled. Due to computational limitations, only five GCMs were

dynamically downscaled and the remaining 27 GCMs were statistically downscaled using

our statistical model that incorporates the dynamically downscaled output. A reasonable

question is whether incorporating the dynamically downscaled output into the statistical

model was helpful or if a simple statistical method would have sufficed. We answered this

question by comparing the statistically generated warming patterns—generated via cross-

validation—and the linearly interpolated GCM warming patterns, to see which method

produced closer results to the five dynamically downscaled GCMs. Fig. 2.8 gives a compar-

ison of warming patterns produced by dynamical downscaling, our statistical downscaling

technique, and linear interpolation. A comparison to the warming at the nearest GCM grid

point, is also included to give an idea of the result if raw GCM data are used, with no

downscaling whatsoever.
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Figure 2.8: Annual-mean warming projections (units: ◦C) for five GCMs produced by four different

methods: nearest GCM grid box (first column), linear interpolation of GCM (second column), sta-

tistical downscaling with the hybrid technique (third column), and dynamical downscaling (fourth

column). Projections are for mid-century (2041-2060) relative to the baseline period(1981-2000)

under the RCP8.5 scenario. The statistically generated pattern for a particular GCM was created

using the hybrid technique trained on the other four GCMs.
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Table 2.2: Comparison of the spatial correlation and root mean squared error (RMSE) for the

raw GCM, linear interpolated and the statistically downscaled warming patterns, relative to the

dynamically downscaled warming. By virtue of their orthogonality, errors in regional mean and

spatial pattern are shown separately.

Annual Error Monthly Error

Method
Spatial

Correlation

Spatial

RMSE (◦C)

Regional-Mean

RMSE (◦C)
Spatial

Correlation

Spatial

RMSE (◦C)

Regional-Mean

RMSE (◦C)

Raw GCM 0.64 0.26 0.21 0.49 0.35 0.26
Linear

Interpolation 0.79 0.20 0.22 0.60 0.29 0.26
Statistical
Model 0.95 0.14 0.23 0.67 0.24 0.27

The statistically downscaled warming patterns are clearly the most visually similar

to the dynamically generated warming patterns. However, it is important to verify this

observation using objective measures of model skill. We used two metrics: spatial correlation

and RMSE (divided into errors in the regional mean and errors in the spatial pattern), shown

in Table 2.2. The average spatial correlation between the statistically downscaled annual-

mean warming patterns and the dynamically downscaled patterns is 0.95, compared to 0.79

and 0.64 for the linear interpolated and raw GCM warming patterns, respectively. This

demonstrates that the statistical method is superior to linear interpolation at predicting the

spatial variations and sharp gradients in warming. For the monthly average patterns, the

statistical model also provides added value over linear interpolation. The value added is

somewhat smaller because the statistical model dials up or down only one spatially varying

pattern (the CIP), while each month has a slightly different characteristic spatial pattern

(Fig. 2.3).

The second metric is root mean squared error (RMSE). For the annual warming,

the statistical model adds value by capturing the spatial variations. The statistical model’s

spatial error is 0.14◦C, which is a substantial improvement over linear interpolation and

the raw GCM values of 0.20 ◦C and 0.26◦C, respectively. The statistical model is also

an improvement over interpolation of the monthly patterns, though the improvement is
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somewhat smaller. Again, this is likely due to the simplicity of using a single spatial pattern

for all calendar months. We experimented with using different spatial patterns for each

month. However, the gains in accuracy due to problems arising from small sample sizes.

(We had only five dynamically downscaled warming patterns each month to calibrate each

monthly-varying model, rather than the 60 patterns used for the original model.) The

statistical model provides no added value in predicting the regional mean warming because

the GCM warming averaged over the innermost domain is already a good predictor of the

dynamical downscaled regional mean.

The biggest advantage of the statistical model comes when we consider the ensemble-

mean annual-mean warming. As we have seen, the statistically downscaled, linearly inter-

polated, and raw GCM warming patterns all have biases relative to dynamical downscaling.

However, when we aggregate the approximate warming patterns into a five-model ensemble,

the statistical model’s errors cancel out, while those from the other methods do not (Fig.

2.9). In fact, the statistically downscaled ensemble-mean is nearly an unbiased estimator of

the dynamically downscaled ensemble mean. The only bias is a slight one at the highest

elevations. In contrast, the other two methods have systematic biases as large as 1 ◦C in

magnitude. These methods give overly smoothed land-sea contrasts that fail to resolve the

sharp gradients in the warming over the mountains, along the coastline, and in the western

part of the domain. Thus, there are large swathes of the region where the statistical model

is necessary to provide an accurate characterization of the most likely warming outcome.

We note that the error estimates in Table 2.2 and the patterns in Figs. 2.8 and 2.9

are based on the statistical model built on only four GCMs and their associated regional

warming patterns. Since each GCM has a unique combination of regional mean and land-

sea contrast (Fig. 10), when one is left out, there is a large region of the parameter space

that goes unrepresented in the calibration of the statistical model. Thus the final statistical

model, calibrated using all five GCMs as described in Section 2.3.3, produces results of

even higher quality. In fact, using linear regression guarantees that the statistically and
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Figure 2.9: Annual-mean warming (◦C) averaged over five GCMs downscaled using four different

methods: (a) nearest GCM grid box, (b) linear interpolation of GCM, (c) statistical downscaling

with hybrid technique, (d) dynamical downscaling. Bias of first three methods relative to dynamical

downscaling (◦C) shown in (e)-(g).

dynamically downscaled mean warming match, causing the biases in the ensemble-mean

annual-mean warming to be negligible. The final statistical model is used to generate the

results discussed from Section 2.4 onward.

2.4 Ensemble-Mean Warming and Uncertainty

The final statistical model (calibrated using all five GCMs) was applied to all 32 CMIP5

GCMs with output available for the RCP8.5 scenario. The GCMs have widely varying values

of the regional mean and land-sea contrast (Fig. 2.10). The regional mean values range from

1.4 to 3.3◦C, and land-sea contrast ranges from 0.3 to 1.3◦C. Notably, these two parameters

are also uncorrelated, so pattern-scaling using only a single of degree of freedom would

be misleading here. The dynamically downscaled GCMs (Fig. 2.10, highlighted in green)

approximately span the range of both parameters, confirming that the statistical model has

been validated in the same parameter range in which it is applied. The annual-mean warming

patterns that result from plugging these parameters into the statistical model are shown in

Fig. 2.11. There is considerable variation among these warming patterns, underscoring the
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Figure 2.10: Annual-mean values of regional-mean warming and land-sea contrast (◦C) for each

GCM (blue dots) with the ensemble mean (red dot). The five GCMs that are also dynamically

downscaled are highlighted in green.

importance of considering multiple global models when doing regional downscaling.

The ensemble-mean annual-mean warming pattern, as well as upper and lower bounds

of the 95% confidence interval, are shown in Fig. 2.12. The regional mean warming is 2.3

◦C , with a lower bound of 1.0 ◦C and an upper bound of 3.6 ◦C . This large inter-model

spread indicates that the models disagree considerably on the magnitude of warming, even

when using the same scenario. However, the global models share the characteristic of more

warming inland than over the ocean. The difference in ensemble-mean warming between

coastal and inland areas is especially dramatic in the summertime (Fig. 2.13). The average

August difference between the inland and coastal areas is 0.6 ◦C , with certain locations
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Figure 2.11: Annual-mean warming patterns (◦C) generated by applying the statistical model to

all 32 GCMs. Warming patterns are shown for the mid-century period (2041-2060) relative to the

baseline period(1981-2000), under the RCP8.5 scenario.
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Figure 2.12: . Ensemble-mean annual-mean warming and upper and lower bounds (◦C), based on

a 95% confidence interval, for 32 statistically downscaled GCMs run with the RCP8.5 scenario.

showing warming elevated above the coastal values by as much as 1.2 ◦C (+62%).
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Figure 2.13: Ensemble-mean monthly-mean warming (◦C) computed by averaging the monthly

statistically downscaled warming patterns over 32 CMIP5 GCMs.

The winter and spring warming that would occur in the mountains would likely be

somewhat larger if we had done dynamical downscaling for all the global models (compare

Figs. 2.3 and 2.13), because the statistical model underestimates some warming due to

snow-albedo feedback. Based on comparisons between the dynamically and statistically

downscaled warming patterns for spring (MAM), the springtime ensemble-mean warming

would be as much as 0.5 ◦C or larger in the San Bernardino and San Gabriel Ranges. This

is consistent with the bias in the statistical model seen at the highest elevations (Fig. 2.9g).
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2.5 Discussion and Conclusions

In this paper, we present a hybrid dynamical-statistical method to downscale the mid-century

warming signal in 32 CMIP5 GCMs. First, we used dynamical downscaling to produce warm-

ing patterns associated with five GCMs. Then, to save computational resources, a statistical

model was built that scales the characteristic dynamically derived patterns according to the

regional warming and land-sea contrast sampled from the global model. This statistical

model was then used to approximate the warming that would result if the remaining global

models were dynamically downscaled. The ensemble-mean regional-mean warming was pro-

jected to be approximately 2.3 ◦C , with 95% confidence that the warming is between 1.0

◦C and 3.6 ◦C . Thus, the inter-model differences in the GCM outcomes create significant

uncertainty in projections of warming over Southern California.

In this hybrid method, statistical downscaling is employed a unique way. First, while

statistical models typically relate GCM output to observations, ours relates GCM output

to dynamically downscaled output. This is because our statistical model is designed to be

an approximate dynamical model. The differences between the dynamically and statisti-

cally downscaled patterns are an order of magnitude smaller than inter-model variations

in the warming. This means that our statistical downscaling projections for the ensemble-

mean warming and spread are reasonable approximations to the projections that would have

resulted from dynamically downscaling all 32 models.

The second difference is that our statistical model was built to directly predict the

temperature change, as opposed to predicting the future period temperatures and then

differencing them with baseline temperatures, as is typically done. Normally, the empirical

relationship employed by a statistical model is derived from the historical time period and

then applied to a future time period. This leads to stationarity concerns that the relationship

between predictor and predictand may not hold in the future period (Wilby and Wigley

1997). In contrast, our statistical model uses a mathematical relationship between the

temperature change in the GCM and the temperature change produced by dynamically
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downscaling. Therefore, we have a different stationarity assumption—one that is easier

to satisfy—that the remaining GCMs have values of mid-century regional-mean warming

and land-sea contrast within the range of the five we dynamically downscaled. Since this

condition is satisfied, we have confidence that the statistical relationships hold for all the

GCMs that we downscale.

The statistical model adds value by capturing the fine-scale spatial variations in the

warming. Inland and mountain locations are expected to warm up considerably more than

coastal areas, especially during the summer months. When we compared the statistically

downscaled patterns to the raw and linearly interpolated GCM patterns, the statistical model

captured these spatial variations much more accurately. Furthermore, when we take an

ensemble average of the warming patterns, the errors in the statistically downscaled patterns

nearly cancel out, revealing only minor biases. In contrast, the raw and linear interpolated

GCM warming patterns have large systematic biases, especially along the coastline and in

topographically complex regions that are not resolved well in the GCMs. The statistical

model does not improve upon the GCM estimates of regional mean warming estimates,

because the GCM warming averaged over our innermost domain is already a good predictor

of the dynamically downscaled regional mean.

Another advantage of our hybrid method is that it reflects our understanding of

regional climate dynamics. Some types of statistical models, like those based on artificial

neural networks, have the effect of being “black boxes,” where the mathematical relationships

have no clear physical interpretation. Unlike those techniques, our method first employs

dynamical downscaling, which allows us to identify two important physical mechanisms

controlling the warming. The first is that the local atmospheric circulation leads to warming

over the coastal ocean similar to that seen over the ocean in GCMs, warming over the

coastal zone that is slightly elevated above the ocean values, and much higher warming

over inland areas separated from the coast by mountain complexes. The second mechanism,

smaller in spatial scope, is snow-albedo feedback, which leads to enhanced warming in the
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mountains. With this knowledge, we built a statistical model that scales the characteristic

spatial pattern (which contains signatures of both mechanisms) to fit with the large-scale

land-sea contrast and regional mean warming. Because the warming patterns produced by

the hybrid approach reflect physical understanding of the region’s climate, they have an

extra layer of credibility. Suppose, for instance, that the real climate does warm more over

the interior of western North America than over the northeast Pacific Ocean over the coming

decades, as is likely if GCM projections are correct. Given the realistic behavior of the WRF

model in distributing humidity and temperature across the landscape, it seems very likely

that the associated warming pattern in the Los Angeles Region would be characterized by

sharp gradients separating the desert interior and coastal ocean, and that these gradients

would be distributed across the landscape in a way very similar to the regional warming

patterns we present here.
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3 Application and Modification of the Hybrid Method

to a Larger Domain Covering All of California

3.1 Introduction

The previous chapter focuses on the development of a new hybrid downscaling method.

This method employs a region-specific statistical model that is constructed from the spatial

patterns found in dynamical downscaling, and the relationships between those patterns

and the GCM climate change signal. Broad questions remain about the portability of this

method. Can it be effectively applied to other domains? If so, will the statistical model rely

on only a single spatial mode?

Here, the hybrid method is applied to a much larger domain encompassing the entire

state of California and the adjacent ocean. Although their sizes differ, the full California

domain also contains both land and ocean areas. The work of Di Luca et al. (2012) suggests

that in these coastal regions that are roughly half-ocean, half-land, the contrast in warming

between the two portions is the dominant contributor to spatial variations. Thus the ex-

pectation is that the first principal component will be associated with the land-sea contrast.

However, the Los Angeles domain spanned a width of approximately 280 km in either direc-

tion, which is covered by only a handful of grid cells for many GCMs. Because the California

domain covers a larger area, the corresponding warming patterns in the GCMs likely show

considerably more spatial variations, which could require multiple large-scale modes, in ad-

dition to the land-sea dipole. Furthermore, a larger domain could include a wider variety

of local effects, like snow-albedo feedback in the Sierra Nevada mountains and low clouds

effects along the coast, that might not both be present in a more localized domain. This too

could require the use of multiple spatial modes, especially for local effects that are not tied

with the land-sea contrast. Also explored here is the effect of excluding the ocean in the

principal component analysis. Since the majority of the spatial details of interest are over

the land areas, principal component analysis is repeated for the land areas only.
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This chapter also attempts to improve the hybrid method. One aspect missing from

the application of the method to the Los Angeles Region was a thorough investigation of

the sensitivity of the statistical model to the exact choice of warming patterns used to train

it. Here Monte-Carlo simulations are performed to as part of a sensitivity analysis of the

optimal sample locations for the large-scale predictors and the statistical model coefficients.

Other small modifications were made in order to make the method more objective.

Layout of this chapter is as follows. In Section 3.2, the dynamically downscaled data

that forms the basis for the statistical model is explored. The baseline simulation is evaluated

against a gridded observational product, and PCA is performed on the warming patterns.

Section 3.3 covers the construction and evaluation of the statistical model. The statistical

model is then applied to the 32 GCMs listed in Table 2.1. Finally, in Section 3.4, we discuss

the applicability of the method, characterize the regions for which it would best-suited, and

make recommendations regarding modifications that might be necessary.

3.2 Dynamical Downscaling

The hybrid statistical model is based on spatial patterns and relationships determined from

dynamical downscaling. In this application, our dynamically downscaled data comes from

simulations using the Weather Research and Forecasting (WRF) regional model applied to

a domain encompassing the state of California.

3.2.1 WRF Model Setup

WRF version 3.5 (Skamarock et al. 2008) was run over two nested domains of 27 km

and 9 km horizontal resolution (Fig 3.1). WRF was coupled to the Noah-MP land surface

model version 1.1 (Niu et al. 2011) to simulate land surface processes, including vegetation,

soil, snowpack, and exchange of energy, momentum, and moisture between the land and

atmosphere. Based on sensitivity experiments the following parameterizations were chosen:

Thompson’s MP microphysics scheme (Thompson et al., 2008); Kain-Fritsch cumulus scheme
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Figure 3.1: Boundaries (thick black lines) and topography (color) of WRF domains 1 and 2. The

resolutions of domains 1 and 2 are 18 km and 6 km, respectively. Coastline and political boundaries

are also included (thin black lines).

(Kain, 2004); MYNN planetary boundary layer scheme (Nakanishi and Niino 2004).

This WRF setup was used to perform multiple simulations, following the pseudo-

global warming approach (PGW; see Rasmussen et al. 2011). The first simulation (the

“baseline” simulation) is a reconstruction of historical climate over the 1981-2000 period.

The National Center for Environmental Prediction’s North American Regional Reanalysis

(NARR; Mesinger et al. 2006) of the 1981-2000 period was used for the lateral and surface

boundary conditions for the baseline simulation. This simulation can be directly compared

to observations of the historical climate to evaluate model skill in reproducing temperature

climatology and variability (Section 3.2.2). The second set of simulations (the “future”
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simulations), represent predictions of the future climate over the 2081-2100 period, based

on the climate change signals present in four GCMs: CNRM-CM5, GFDL-CM3, INMCM4,

and IPSL-CM5A-LR (see Table 2.1 for details). Boundary forcing for each future simulation

is generated by taking the same NARR data corresponding to the 1981-2000 period and

adding on the change in the GCM monthly climatology between the 2081-2100 and 1981-

2000 periods. The added perturbation includes changes in 3D temperature, winds, relative

humidity, and geopotential height. The details of the calculation of the perturbation are the

same as in the Los Angeles case (see Section 2.2.3).

Spectral nudging was applied above the boundary layer (roughly above 800 hPa) in

both the baseline and future runs. Zonal and meridional winds, temperature, and geopo-

tential height were nudged back to NARR values in the baseline simulation, and to NARR

plus the change in GCM monthly climatology in the future simulations. Nudging was only

used in the outer domain and only to waves with wavelength greater than 200 km. Nudging

was performed every 360 seconds, with a nudging coefficient of .0003 s−1.

3.2.2 Baseline Temperature Validation

To evaluate the skill of our dynamical model in reproducing baseline temperature climatology

and variations, we compare the baseline simulation to the Livneh et al. (2013; henceforth

L13) observationally-based gridded product. The L13 1/16-degree dataset is an update to

the Maurer et al. (2002) gridded product based on data from NOAA Cooperative Observer

(COOP) stations from around the country. L13 data include daily maximum (Tmax) and

minimum (Tmin) temperatures, but not daily average temperatures (Tavg). For comparison

purposes, Tmax and Tmin are averaged over each month to create monthly-average Tavg

values. L13 Tavg was resampled (using nearest-neighbor) to the WRF 9km resolution grid.

(Note: L13 data is only available over land areas.) Snapshots of WRF temperatures were

recorded at 3-hourly intervals for the beginning portion of the simulation. This temporal

resolution was determined to be too low to properly resolve Tmax and Tmin values. So,
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Figure 3.2: Evaluation of model mean climatology and temporal variability versus L13 gridded

product over the period 1995-1999. (a) Difference in annual-mean surface air temperature cli-

matology (WRF minus L13, units: ◦C). (b) Correlation between monthly-average temperature

anomalies. (Anomalies are relative to the composite monthly-mean climatology). Low-resolution

(27 km) topography also shown (black contours).

beginning in year 1995, snapshots were recorded at 30 minute intervals to allow for more

accurate calculations of Tmax and Tmin. Thus our comparison is limited to the years 1995-

2000. WRF daily Tmax and Tmin values were averaged to create monthly Tavg values.

First, we examine the skill of WRF in reproducing the 1995-2000 annual-mean Tavg

climatology. The majority of land areas in our domain have WRF climatological Tavg

values within 1 ◦C of L13 values (Fig 3.2a). The largest discrepancies are in (1) the coastal

mountains, where WRF produces baseline Tavg values 1 to 3 ◦C larger than L13; and (2)

the Colorado River Basin (along the border with Arizona), where WRF produces Tavg

values as much 4 ◦C colder than L13. These differences are generally in areas with complex

topography. We suspect that differences are due either to the difficulty resolving complex

features in WRF or problems associated with creating a gridded temperature field in complex

terrain from sparse observations.
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Monthly Tavg anomalies were computed relative to the 1995-2000 monthly climatol-

ogy in order to examine temporal variability. Correlations of WRF and L13 Tavg anomalies

are above 0.9 for all locations, with many locations inland of the major coastal mountain

ranges having correlations over 0.99 (Fig 3.2b). These universally high correlations sug-

gest that WRF successfully captures temporal variations in the region. Correlations are

slightly lower along the coast and in the Sierra Nevada mountains. In the coastal zone,

WRF may have difficulty simulating variability in low clouds or the marine layer. In the

Sierra Nevada, temperature variations may depend on snowpack size, area, and persistence,

which are complicated and challenging to model.

Overall, WRF agrees well with L13 in both climatology and variability during the

baseline period. Agreement is excellent over interior land areas. Agreement is still good in

the coastal zone and mountain areas, where complex topography and challenging dynamical

processes are present. This comparison with gridded data gives us confidence that when

a realistic signal is imposed at the boundaries, WRF produces the appropriate response

throughout the domain.

3.2.3 Temperature Change Patterns

The future WRF simulations representing the 2081-2100 period are forced at the boundaries

by 1981-2000 NARR data plus the change in monthly GCM climatology between the two

time periods. Therefore it is likely that temperature change signal computed by differencing

the future and baseline WRF climatologies will be similar to that of the GCM climatological

difference. Figure 3.3 shows the linearly interpolated monthly surface air temperature change

in each GCM. Clear patterns exist across the GCMs, including the land-sea contrast in the

warming discussed at length in the previous chapter. Land-sea warming contrast is also

present in the WRF dynamically downscaled monthly-mean warming (Fig 3.4). While the

broad warming patterns are often similar, WRF is not completely constrained to follow the

warming pattern of the GCM. WRF provides its own treatment of local effects. For example,
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Figure 3.3: Monthly surface air temperature climatology difference (◦C) between the future (2081-

2100) and baseline (1981-2000) periods for five GCMs.

the large patches of snow-albedo feedback warming enhancement found in CNRM-CM5 in

March, April, and May are not present at the same location and strength in the dynamically

downscaled simulation. WRF does predict warming enhancement due to reduced snow cover

in May and June, but the magnitude is much less than suggested by the GCM.

Principal component analysis (PCA) was performed on the 48 monthly spatial anoma-

lies (relative to regional mean) to determine the preferred spatial modes resulting from

dynamical downscaling. Typically PCA is performed on temporal anomalies, resulting in

principal components that are time series and associated loadings that form a spatial pattern.

Here PCA is performed on the spatial anomalies, where the principal components are spatial

patterns, and the loadings are functions of month and GCM. (Note that grid cells nearest to

the boundary of the domain have been removed in order to prevent un-physical boundary

effects from unduly affecting the results of PCA.) Figure 3.5 shows the three largest principal

components (PCs) and their associated loadings, as well as the regional-mean warming for

each GCM and month. On average, the regional mean warming is highest in late summer

and early fall. The first principal component (PC1) explains 89% of the spatial variance and
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Figure 3.4: Monthly surface air temperature climatology changes (◦C) between the future (2081-

2100) and baseline (1981-2000) periods for four dynamically downscaled GCMs. Results shown for

domain 2.

is clearly the most important spatial pattern. Land-sea contrast is the primary feature of

PC1, which is consistent with the results for the Los Angeles Region, which used a domain

comprised of roughly equal parts land and ocean. The remaining PCs account for only a

small fraction of the variance (3.5% and 2.8%, respectively), but could very well represent

physical modes of spatial variability in the climate change patterns. PC2 and PC3 likely

reflect how large-scale gradients in the GCM warming patterns oriented over land areas are

expressed in the presence of the fine-scale topography.

3.3 Hybrid Statistical Model

Statistical downscaling relies on mathematical relationships between large-scale predictors

and fine-scale predictands. In this domain, the fine-scale warming can be distilled down to

two predictands: the regional mean warming and the PC1 loading (a proxy for the land-sea

warming contrast). The statistical model approximates the dynamical warming patterns

as a linear combination of the regional mean warming and the land-sea contrast multiplied
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Figure 3.5: Regional-mean warming (a) spatial pattern and (e) values for each month and dynam-

ically downscaled GCM (colored lines – individual GCMs; solid black line – four-model mean).

(b-d) First three principal components, and (f-h) associated loadings, based on PCA of 48 monthly

warming patterns.

by PC1. The values of the dynamically downscaled regional-mean warming and land-sea

warming contrast generally appear to be inherited from the large-scale GCM warming pat-

tern (compare Fig 3.3 and Fig 3.4). Thus it makes sense to sample the linearly interpolated

GCM warming in order to estimate the dynamically downscaled regional mean warming and

land-sea warming contrast. Once these sample locations have been identified, the statistical

model can be configured.
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3.3.1 Finding Optimal Sample Locations

The monthly warming patterns for each GCM were linearly interpolated to a 1◦ x 1◦ grid

and then correlated with values of the dynamically downscaled regional mean warming (Fig

3.6a,d). Correlations are highest over the ocean west of our domain, though a number of

remote areas also show high correlations. The highest correlated point, [129◦ W, 41◦ N], is

used as the sample location for the regional mean warming. Next, the linearly interpolated

warming was correlated with the PC1 loadings. We expect that PC1 loadings can be pre-

dicted by the land-sea contrast in the GCM, which means eventually selecting two points,

one over land and one over the ocean and using their difference as a the predictor. The

first location was selected just based on the highest correlations of the linearly interpolated

GCM warming and PC1 loadings, which were found over the Mojave Desert (Fig 3.6b,e), at

[116◦ W, 35◦ N]. The highest correlated point is used as the inland warming sample point.

To select the location to sample the ocean warming, partial correlations were computed

between the linearly interpolated GCM warming and the PC1 loadings, with the effect of

the warming sampled inland location removed (Fig 3.6c,f). The ocean warming is sampled

at the point of strongest negative correlation, found at [124◦ W, 37◦ N], off the coast of

California.

3.3.2 Model Formula

The statistical model approximates the dynamically downscaled warming as the sum of the

regional mean warming term having no spatial variation and a land-sea contrast term where

PC1 serves as the spatial pattern. Mathematically, the approximate warming at a location

(i,j), for a given month and GCM, can be expressed as

∆T stat(i, j) = a∆TGCM
RegMean + b+ PC1(i, j) · (c∆TGCM

Inland + d∆TGCM
Ocean + e) (2)
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Figure 3.6: (a) Correlation between interpolated GCM monthly warming and dynamically down-

scaled monthly regional-mean warming (average taken over Domain 2). Regional-mean sampling

location shown in green. (b) Correlation between interpolated GCM monthly warming and load-

ings associated with the first principal component. The highest correlated point (green) is used as

the first sampling locaiton. (c) Partial correlations between interpolated GCM monthly warming

and loadings associated with the first principal component, with the effect of the first sampling

location removed. (d-f) Same as (a-c) but zoomed in to show detail.

where coefficients a-e are calculated from linear regression: a = 1.02, b = 0.63 ◦C , c = 0.046,

d = −0.031, and e = −0.014.
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3.3.3 Cross-Validation

Ideally, testing of the hybrid statistical model would involve comparing the dynamical down-

scaling warming of a new GCM to the warming predicted by applying the hybrid statistical

model to that GCM’s large-scale pattern. However, the main purpose of developing the hy-

brid technique is to limit the number of GCMs that need to be dynamically downscaled, since

each one takes considerable computational resources. An alternative is leave-one-out cross-

validation (LOOCV) where the hybrid statistical model is retrained using the downscaled

data from all but one GCM, and is then used to statistically downscale the remaining one.

If the hybrid statistical model has good predictive power, then the statistically downscaled

warming pattern should be relatively close to the dynamically downscaled pattern. Unfor-

tunately, there are only four total dynamically downscaled GCMs, and three GCMs may be

too small of a sample size to properly train a functional statistical model. To avoid this pos-

sibility, we implement an alternative technique. A total of 500 Monte Carlo simulations were

performed in which 36 of the 48 monthly dynamically downscaled warming patterns were

selected at random (without replacement) and used to train the hybrid statistical model.

Then the new statistical model was tested on the remaining 12 warming patterns. These

Monte Carlo simulations serve two separate interests: (1) evaluating the sensitivity of PC1,

the sample locations, and regression coefficients to the choice of months/GCMs included in

statistical model calibration, and (2) assessing the predictive power of the statistical model.

3.3.4 Sensitivity of Model Components

The first principal component generated by PCA is remarkably insensitive to the choice of

month/GCM used (not shown). This is because land-sea contrast accounts for the dominant

spatial pattern in this region for nearly every month and GCM. Sample locations are also

fairly consistently located (Fig 3.7). The point of highest correlation with the dynamically

downscaled regional mean warming is the same for over 300 of 500 Monte Carlo simulations.

The remaining 200 simulations have their highest correlations at adjacent grid points. Simi-
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Figure 3.7: Frequency that the interpolated GCM warming at a given grid cell had (out of 500

total Monte Carlo simulations) (a) the highest correlation with the dynamically downscaled regional

mean warming, (b) the highest correlation with the loadings associated with PC1, (c) the highest

partial correlations with the loadings for PC1, with the effect of the warming at the point described

in (b) removed.

larly, the point having highest correlation with the PC1 loadings (where the inland warming

is sampled) is consistently located in the Mojave Desert, with over 400 of the simulations

sharing the same highest correlated point. The point having highest partial correlations

with PC1(where the ocean warming is sampled) shows considerably more variability, with

many simulations showing values adjacent to the California coast, while others are farther

out over the ocean, at the edge of the domain.

The coefficients generated via regression show different amounts of variation (Fig 3.8).

The spreads are smallest in a and c (the scaling factors applied to the regional mean and

inland warming), which is consistent with the fact that their associated sample locations are

less variable. In contrast, d and e are dependent on sample locations of the inland warming,

ocean warming, which widens their distributions.
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Figure 3.8: (a-e) Distribution of hybrid statistical model regression coefficients a-e in Equation 2

for 500 Monte Carlo simulations.

3.3.5 Predictive Power

Predictive power is assessed based on the mean absolute error (MAE) between the twelve

dynamically and statistically generated warming patterns. Distributions of MAE are based

on the 500 Monte Carlo simulations. Errors were subdivided into errors over land areas,

over the ocean, over the entire domain. For comparison purposes, we include the errors for

a näıve statistical downscaling technique: linear interpolation. Linear interpolation takes

into account no high resolution spatial information and thus serves as a clear baseline upon

which the hybrid statistical model should improve.

The hybrid statistical model improves over linear interpolation for land areas, with

median values of MAE at 0.43 ◦C and 0.57 ◦C (Figs 3.9, 3.10). On the other hand, both

the hybrid model and linear interpolation have lower, roughly equal errors over the ocean.

The sea surface temperature (SST) at the ocean surface for WRF is set to NARR values in

the baseline simulation and NARR plus the linearly interpolated GCM SST perturbation

in future simulations. Since the surface air temperatures are closely tied to SSTs in both

WRF and GCM, the WRF surface air warming pattern over the ocean is very similar to
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Figure 3.9: Box plots showing the distribution of mean absolute error for the hybrid statistical

model and linear interpolating in capturing the dynamically downscaled warming over (a) land

areas, (b) ocean, (c) all areas, based on 500 Monte Carlo simulations. Red line shows median, blue

box contains the 25th to 75th percentile. All data is contained with the black bars except for the

most extreme values, which are plotted individually.

the linearly interpolated GCM surface air warming pattern. Thus linear interpolation of

the GCM pattern is already a good predictor over the ocean. (Although this is true for

our particular WRF experimental design, regional climate change experiments with coupled

ocean and atmosphere models would probably find more complex, realistic structure in the

ocean warming fields, and it is less likely that linear interpolation would still be as accurate.)

3.3.6 Ensemble Warming Projections

The final hybrid statistical model – calibrated using all 48 dynamically downscaled monthly

warming patterns – was applied to 32 CMIP5 GCMs run under the RCP8.5 scenario (full

details on the GCM included in this ensemble can be found in Table 1). The resulting annual-
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Figure 3.10: Histograms showing the distribution of mean absolute errors (units: ◦C)relative to

dynamical downscaling from 500 Monte Carlo simulations of hybrid statistical model output (a)

over land areas, (b) over the ocean, (c) over the entire domain. (d-f) same as (a-c) but for linear

interpolation.

mean warming patterns (2081-2100 minus 1981-2000) show a variety of regional mean and

land-sea contrast values (Fig 3.11). We expect that the true annual-mean patterns would

have more spatial heterogeneity than those presented, because we only allow for one spatial

degree of freedom in the statistical model. However, PCA shows that a single degree of

freedom could account for 89% of the spatial variance in the monthly warming patterns of

dynamically downscaled GCMs. This gives us confidence that the statistical model captures

the most important features.

The purpose of performing ensemble mean projections is to produce probabilistic

estimates of most likely outcomes and their uncertainty. The statistical model is nearly

an unbiased estimator of the ensemble-mean annual-mean warming for the four dynami-

cally downscaled models (Fig 3.12). In contrast, linear interpolation has systematic biases

where the coastline and complex terrain create fine-scale warming variations that cannot

be captured by the GCM. This leads us to believe that the statistical model’s prediction of
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Figure 3.11: Annual-mean warming patterns (2081-2100 minus 1981-2000) produced by the hybrid

statistical model for 32 CMIP5 GCMs.

the annual-mean warming averaged over the entire 32-GCM ensemble would also be more

accurate.

The statistical model also improves upon linear interpolation in capturing the spread

in warming predictions. Inter-model range in the warming was calculated for the four dynam-

ically downscaled GCMs, and it is clear that linear interpolation leads to underestimation

of the spread, especially over land areas (Fig 3.13). Dynamical downscaling gives a model

spread of more than 2.6 C over all land areas, with high elevation areas in the Sierras having

spreads of as much as 3.6 C, while linear interpolation gives values in the 2.0-2.4 C range

over California. Hybrid statistical downscaling does not recover all of the spread (especially

since only one degree of spatial freedom is used), however some improvement is made. Av-

erage values of the spread over California are more in line with dynamical downscaling, with

values as high as 3.0 C in the Sierras. Assuming that the four dynamically downscaled

GCMs are representative subset of the 32 GCMs, then the hybrid statistical model’s pro-
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Figure 3.12: (a) Annual-mean warming (units: ◦C) averaged over the four dynamically downscaled

GCMs. (b) Annual-mean warming produced by linearly interpolating the four corresponding GCM

warming patterns. (c) Corresponding annual-mean warming produced by hybrid statistical down-

scaling. (d) Mean bias of (b) relative to (a). (e) Mean bias of (c) relative to (a).

jected inter-model spread of the ensemble is also likely to be an improvement over linear

interpolation.

3.4 Discussion

The main goal of this chapter is to evaluate how well the hybrid statistical method works in

an alternate domain. In this larger domain, covering all of California, the method appears

to work well based on a couple of different metrics. The method shows improved predictive

power versus linear interpolation over land areas (Sec 3.3.5), and elimination of biases in

the ensemble-mean warming, and improved estimation of the inter-model spread (Sec 3.3.6).

Over the ocean, there is relatively little spatial detail in the warming patterns, so the hybrid
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Figure 3.13: Inter-model range in the annual-mean warming (units: ◦C) for (a) the four dynami-

cally downscaled GCMs, (b) the corresponding linearly interpolated GCMs, (c) the corresponding

warming patterns produced by hybrid statistical downscaling.

method and linear interpolation both do equally well (though this might be different if WRF

were coupled to a high resolution ocean model instead of specifying NARR SST at the ocean

surface).

The first principal component for this domain exhibits a land-sea dipole in the warm-

ing, similar to that found in the Los Angeles Region. Our initial suspicion was that this

was because each domain consists of roughly half land and half ocean points (in the Los

Angeles domain there was slightly more land, around 2/3 of the domain). Because the

ocean warms considerably less than land in nearly all of our simulations, the difference in

warming between these accounts for the majority of the spatial variance. This makes us

question how domain dependent the results of the statistical model are. If the ocean were to

be excluded in PCA, would the first PC still be a land-sea dipole? In fact, when the ocean

is excluded, the first five principal components produced by PCA are remarkably similar to

those produced by PCA using the entire domain (Fig 3.14). When the entire-domain PCs

were re-centered so that the mean of the scores over the land areas was zero (to be consistent

with the land-only PCs), the sign of land-only PC2 was flipped, and the order of land-only

PCs 4 and 5 were switched, the correlations between the two sets of patterns over the land

areas were generally very high (r = 0.996, 0.78, 0.61, 0.72, 0.90 for the five pairs of PCs). In
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particular PC1 was nearly identical over the land areas (r = 0.996). The fact that these two

patterns are so similar indicates that whether that warming is more ocean-like or land-like

provides the main spatial heterogeneity not just between land and ocean, but also between

land points. In other words, even if they ocean is excluded, the contrast between coastal

and inland areas is still the dominant mode of spatial variability. However, the fraction

of variance explained by PC1 in the land-only case, is less (75% versus 89% for the entire

domain). The difference in warming between coastal and inland land areas is smaller than

between ocean and land areas. So, when the ocean is removed, PC1 explains less variance

than before. Meanwhile, the other PCs are relatively unaffected when the ocean points are

not included, since their patterns are primarily centered over the land areas.

These results suggest that the hybrid downscaling method is likely to be useful in

coastal areas, since land-sea contrast is the dominant spatial pattern, regardless of whether

the domain explicitly includes ocean. Land-sea warming contrast is strongest in the sub-

tropics (Sutton et al. 2007), which explains why the method works so well over the Los

Angeles domain and the larger California domain. We hypothesize more generally that the

method will be useful in any domain in which there is a dominant dipole in the warming

that is also present in the GCM. (However, if the dipole is not also present in the GCM

warming pattern, then it could be difficult to create a mathematical relationship between the

large-scale predictor and the fine-scale patterns, which would reduce the skill of the hybrid

statistical model.)

Some adjustments to the method were made when it was applied to the larger Cali-

fornia domain. Some of these were practical considerations. For example, single grid points

were used to sample the predictors for the regional mean and PC1 loadings, instead of av-

erages over larger regions. This adjustment was made to make the method more objective,

since selecting the appropriate averaging box required subjective human input, and could

not be easily performed 500 times as needed for the Monte-Carlo simulations. Despite se-

lecting a single location, instead of using a broader averaging area designed to make the
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Figure 3.14: Comparison of first five PCs produced by PCA over entire domain (left column) and

over just the land areas (right column). To facilitate a better visual comparison, (i) the PCs on the

left have been re-centered so that the mean over the land areas is zero, (ii) the sign of land-only

PC2 has been flipped, and (iii) the order that land-only PCs 4 and 5 appear have been switched.

Correlations are shown between the pairs.
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method more robust, the statistical model was still successful, based on the assessment of

predictive power.

The use of Monte-Carlo simulations was another adjustment to the method. Using

Monte-Carlo simulations added an aspect that had been missing from the previous applica-

tion of this method, an assessment of the sensitivity of the parameters to the months and

GCMs included in the training of the statistical model. This addition allowed us to see

that the optimal sampling location stayed in nearly the same locations for all but a handful

of simulations, giving us confidence in the robustness of the statistical model. The draw-

back of using Monte-Carlo simulations is in the evaluation of predictive power. Although

it allows for more samples, using a randomly selected subset of months and GCMs is a

less appropriate way of evaluating the statistical model’s purpose. The statistical model is

intended to predict the warming of all months of new GCMs, not new months for GCMs

are already included. For instance, when the July and September dynamically downscaled

warming patterns for GFDL-CM3 are included in the training of the statistical model, then

the statistical model probably does a very good job predicting the outcome for August under

GFDL-CM3, because the model inputs and outputs are similar. A truer test would be to

use the leave-one-out cross-validation procedure (LOOCV) from the Los Angeles applica-

tion, in which one GCM is completely left out and the statistical model is trained on the

remaining GCMs. Ultimately, with only four GCMs to work with here, leaving only three

for training seemed too small a sample to train on, and the Monte-Carlo technique was used.

Our recommended best practice is to dynamically downscale as many GCMs as is feasible,

5 or more, with 6 or 7 preferable. This will allow for LOOCV to be used without radically

changing the statistical model. Regardless, Monte-Carlo simulations are still recommended

to ascertain the sensitivity of model parameters.
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4 Comparison of Dynamically and Statistically Down-

scaled Warming Patterns

4.1 Introduction

Recently, archives have been made available of CMIP3 and CMIP5 GCMs temperature and

precipitation data downscaled using two prominent statistical downscaling methods: Bias

Correction with Constructed Analogs (BCCA) and Bias Correction with Spatial Disaggre-

gation (BCSD). GCM surface air temperature and precipitation fields have been downscaled

to 0.125◦ resolution to recover significant sub-grid scale features that cannot be captured by

the GCMs themselves. Data covering the entire continental United States are available on-

line at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections (Reclamation 2013;

henceforth R13) and are likely to be widely used as inputs a range of regional climate change

impacts models (Maurer et al. 2007). It is important for users of these archives to under-

stand the potential drawbacks and limitations of the data and the effect of those limitations

on subsequent work. This study is limited to an investigation of the downscaled temperature

data.

Previous studies have noted in passing that statistical downscaling temperature pat-

terns may miss effect of the snow-albedo feedback, leading to an underestimation of the

future warming compared to dynamical downscaling. Snow-albedo feedback happens when

warmer temperatures lower the effective surface albedo, either by reducing snow cover or

changing the reflective properties of the snow, and result in an increase in absorbed down-

ward short-wave radiation, leading to further warming. Qu and Hall (2007) show that, of

the two pathways to reducing albedo, reduction in snow cover is dominant. Salathe et al.

(2008) found that dynamical downscaling of the ECHAM5 global model over the Pacific

Northwest produced temperature changes in mountain areas that were significantly larger

than with statistical downscaling. The dynamically downscaled results had warming en-

hancements due to snow cover reductions by as much 1.5 ◦C above what was not found in
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the GCM or through statistical downscaling. Kim (2001) and Kim et al. (2002) also noted

the clear presence of snow-albedo feedback in dynamically downscaled simulations. Pierce

et al. (2013) generated projections of temperature and precipitation changes over Califor-

nia using statistical methods BCSD and BCCA, and dynamical downscaling with multiple

RCMs, although because the results were aggregated over climate regions, the differences in

warming due to presence of snow-albedo feedback could not be judged.

Capturing the warming enhancement due to snow-albedo feedback is important for

hydrology impact studies in mountain areas. For example, in mountain ranges like Califor-

nia’s Sierra Nevada, snow accumulates over the wet season and melts in the late spring and

summer, playing an important role in supplying water for the region. Underestimating the

warming here could lead to underestimates of the loss in future snowpack and shift in timing

of the snowmelt. Furthermore, snowmelt impacts other hydrological variables like stream

flow and runoff, which are used for flood-risk assessments and agricultural studies.

In this study, we determine if the statistically downscaled warming patterns by R13

underestimate the warming enhancement due to snow-albedo feedback and if so, by how

much. To do this, the warming patterns produced by BCSD and BCCA are compared to

those produced by dynamical downscaling with WRF performed in Chapter 2. Details about

the data presented in Section 4.2. In Section 4.3, the warming patterns are compared for four

CMIP5 GCMs over a Southern California domain that includes a number of mountain com-

plexes including the San Gabriel, San Bernardino, and Southern Sierra Nevada mountains

where snow-albedo effects occur. We demonstrate that the most important discrepancy be-

tween the statistically and dynamically downscaled warming projections in this region comes

from snow-albedo feedback. We also calculate the magnitude of the warming sensitivity in

WRF and suggest a new metric for quantifying the impact of the warming enhancement. In

Section 4.4, we propose explanations for why neither BCSD nor BCCA effectively capture

the warming enhancement and suggest potential solutions. Finally, Section 4.5 contains a

summary of our findings.
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4.2 Downscaled Climate Change Data

The data used in this study reflect multiple ways to downscale the climate change signals

from GCMs in Fifth Coupled Model Intercomparion Project (CMIP5; cite). Details about

each of the four GCMs used in this study are provided in Table 2.1. The RCP8.5 scenario

was selected for all future runs.

4.2.1 Statistical Downscaling with BCSD and BCCA

Statistically downscaled data were downloaded from the Downscaled CMIP5 Climate and

Hydrology Projections, available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_

projections. Projections at 0.125◦ resolution are derived using two different statistical

techniques.

The first technique, Bias Correction and Spatial Disaggregation (BCSD), is described

by Wood et al. (2002), Wood et al. (2004), and Maurer (2007). BCSD involves two steps.

In the bias correction step, monthly GCM data is first regridded to 1◦ resolution and then

bias-corrected relative to the 1950-1999 monthly climatology from an observationally-based

gridded product. The observationally-based gridded product used in this case is the Maurer

et al. (2002) 0.125◦ gridded data set, coarsened to 1◦. Bias correction is performed using

a quantile-mapping procedure that corrects for biases between the cumulative distribution

functions of the GCM and gridded product. In the spatial disaggregation step, the bias-

corrected and regridded GCM data is differenced with the 1950-1999 climatology to produce

monthly anomalies. These anomalies are linearly interpolated to 0.125◦ resolution and added

to the 0.125◦ observed climatology to create monthly downscaled data.

Hidalgo et al. (2008), Maurer and Hidalgo (2008), and Maurer et al. (2010) describe

the second technique: Bias Correction with Constructed Analogs (BCCA). This technique

produces daily values of maximum and minimum temperature. The first step of BCCA is to

regrid the GCM data to 1◦ and bias correct relative to the daily Maurer et al. (2002) gridded

product. Daily bias corrections are performed based on cumulative distribution functions
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created from the historical daily Tmax (Tmin) data within a window of ±15 Julian days. The

second step, constructed analogs, involves comparing these 1◦ regridded, bias-corrected GCM

patterns for a given day to a library of coarsened daily patterns (analogs) from the 1950-

1999 Maurer data. This library is seasonally confined, consisting of the daily Tmax (Tmin)

patterns within ±45 days of the target day, for every year of the 1950-1999 period (∼2300

total patterns). For a given day, the 30 closest analogs to the GCM pattern are chosen from

this library of historical analogs based on the root mean squared error. Linear regression

is used to calculate the linear combination of these 30 analogs that best approximates the

target pattern. Finally, to generate the high-resolution, 0.125◦ downscaled result, the same

linear combination is applied to the corresponding 0.125◦ observed patterns for those same 30

historical days. Since this technique produces daily maximum and minimum temperatures,

these were averaged over the month to produce monthly-mean temperatures.

For both BCSD and BCCA, data from two time slices were used in this study: (1)

“baseline” 1981–2000, and (2) “future” 2041–2060. Future and baseline monthly surface

air temperature climatologies were differenced to produce monthly varying climate change

patterns. While data is available for the entire continental U.S., here we narrow our scope to

a region that includes Southern California and the Southern Sierra Nevada mountains. This

subset was selected to correspond with the domains of the available dynamically downscaled

data. Likewise, GCMs were selected to correspond with available dynamically downscaled

GCMs. Data is only available for land areas.

4.2.2 Dynamical Downscaling with WRF

Dynamically downscaled data comes from simulations using the Advanced Research Weather

Research and Forecasting Model version 3.2 (WRF; Skamarock et al. 2008) over California

performed in Chapter 2. The simulations were done with three nested domains. The out-

ermost domain covers the entire state of California and the adjacent ocean at a horizontal

resolution of 18 km, the middle domain covers roughly the southern half of the state at a
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horizontal resolution of 6 km, and the innermost domain covers Los Angeles County. WRF

is coupled to the Noah land surface model (Chen and Dudhia 2001). These runs consist of a

single baseline run and multiple future runs. The baseline run is intended to be a simulation

of the historical period September 1, 1981 through August 31, 2001, whose realism can be

evaluated through comparison to observations. (Chapter 2 and Berg et al. (in press) assess

the skill of this run in simulating observed temperature and precipitation, respectively.) The

lateral and ocean surface boundaries for the baseline run come from the North American Re-

gional Reanalysis dataset (NARR, Mesinger et al. 2006) for the specified 1981-2001 period.

The four future runs are intended to simulate the 2041-2061 period based on the climate

change signals found in four CMIP5 GCMs: CCSM4, CNRM-CM5, GFDL-CM3, MIROC-

ESM-LR. Table 2.1 gives the details of the four GCMs used. Boundary conditions for these

runs were created by adding the differences between future (2041-2061) and baseline (1981-

2001) monthly-mean climatology from each of the GCMs onto the 1981-2001 NARR-derived

boundary conditions. All relevant meteorological variables were included in these calcula-

tions, as well as sea surface temperature. (See Chapter 2 for full details of the experimental

design.)

For comparison with the statistically downscaled data, the WRF output in the outer

(18-km resolution), and middle (6-km resolution) domain were used. Data from these do-

mains was regridded to 0.125◦ resolution. The regridded middle domain data was used

where possible, since its native resolution is higher. The middle domain covers a majority

of the comparison region, including the mountain areas central to our analysis. However,

for completeness, the regridded outer domain data is used in the northwest and northeast

corners of the comparison region, which are not included in the middle domain. We limited

our analysis to land areas, as the statistically downscaled data is only available there.

Precipitation and temperature validation of the baseline simulation (performed in

Chapter 1 and by Berg et al. (in press)), showed that WRF is able to capture both the

mean climatology and temporal variations reasonably well. Here we extend the validation to
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Figure 4.1: Monthly average snow-covered fraction for January-May 2001 in WRF (left),

MODIS/Terra (middle), and the difference between them (right).
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snow-covered fraction by comparing against MODIS/Terra Snow Cover Monthly L3 Global

0.05◦ CMG v.5 satellite data (Hall et al. 2006). WRF snow cover for the months January-

May of was linearly interpolated to the 0.05◦ common grid and compared to MODIS/Terra

snow cover (Fig 4.1). In general, WRF captures the seasonal progression of the snow extent

very well. The main areas of disagreement occur right near the snow line, where snow cover

would be most sensitive temperature. WRF snow cover extends to lower elevations on the

windward slopes of the Sierra Nevada, San Gabriel, and San Bernardino mountains, while

there is too little snow cover on the leeward side. These narrow bands of disagreement

are similar to those found by Wrzesien et al. (2014), who comparing WRF V3.4/Noah-

MP and MODSCAG over the Sierra Nevada. These could be due to WRF tendency to

overestimate windward precipitation and underestimate leeward precipitation (Caldwell et

al. 2009; Rögnvaldsson et al. 2011). A second, unrelated problem occurs in the northeast

corner of the domain, where the outer, 18-km resolution domain is used. Here WRF clearly

overestimates the snow cover and fails to resolve the complicated snow cover features present

in the MODIS/Terra data. Based on this comparison, we trust WRF to simulate the timing

and magnitude and snow cover over the majority of the domain, except for slight biases near

the snow line and large overestimation of snow cover extent in the northeast corner of the

domain.

4.3 Warming Disagreement in Snow-Sensitive Areas

Analysis begins with a comparison of the ensemble-mean monthly warming patterns for each

method. The main systematic difference between them occurs during the late winter and

spring (Fig 4.2). In areas of snow cover loss, WRF projects the warming to be amplified by

as much 50% relative to the other methods. Areas most strongly affected include the slopes

of Sierra Nevada, San Gabriel, and San Bernardino mountain ranges. Bands of enhanced

warming between the historical and future snow lines are visible, as noted in Chapter 2. The

enhancement is especially prominent in the March. While all methods produce an increase
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Figure 4.2: Ensemble-mean temperature increase for the months of February through May from

BCSD (row 1), BCCA (row 2), and WRF (row 3). WRF ensemble-mean decrease in snow-covered

fraction (row 4).

in March domain-average temperature of around 2.3 ◦C, WRF shows warming as high as

3.5 ◦C at locations with snow cover reductions. While the statistically generated patterns

show some gradients in the warming, neither of them matches the location or intensity of

the warming enhancement found in WRF.

When we further examine the WRF data by comparing the warming to the change

in snow-covered covered fraction for each of the four dynamically downscaled GCMs, we
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Figure 4.3: March warming versus change in snow covered fraction over the inner-most WRF

domain. Note: only points where ∆SCF > 0.07 are shown. Black lines are generated by performing

linear regression for each downscaled GCM. (b) Same as (a) but the warming has been shifted to

intercept zero. The shifted values reflect the warming enhancement. The black line is generated

from linear regression of the combined data from all four downscaled GCMs..

see a linear relationship between the two variables (Fig 4.3a). The linear relationship has a

different intercept but nearly the same slope in each case. When the data from each GCM

is shifted to intercept zero (Fig 4.3b), the values represent the warming enhancement due

to snow cover feedbacks. Note that the linear relationship of each set of points is now very

similar, justifying their treatment as a single population. The slope of the line in Fig 4.3b

represents the sensitivity of the warming enhancement to the snow cover change, found to

be −3.5 ± 0.1◦C. Thus WRF predicts that a location that goes from full snow coverage to

bare ground would warm an additional 3.5 ◦C. Indeed, there are locations that lose over 50%

snow cover in both the GFDL-CM3 and MIROC-ESM-CHEM runs, resulting in warming

enhancements of more than 2 ◦C.

The warming enhancement due to snow cover changes is a phenomenon present during

the entire October-June period, but with varying geographic scope and intensity. Based on

statistics of the four-model mean, snow-covered area in our inner domain decreases the most

in February (Fig 4.4a). However the sensitivity to snow-cover change appears to follow the
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Figure 4.4: WRF projected ensemble mean (a) decrease in snow-covered area (units: km2), (b)

warming enhancment per change in snow-covered fraction (units: K), (c) warming enhancment

multiplied by change in snow-covered area (units: K·km2)

seasonality of insolation, with a peak in June (Fig 4.4b). Thus snow coverage decreases are

larger earlier in the season, but the sensitivity of the warming to those changes is relatively

low. Meanwhile, later in the season, fewer areas are affected because there is less snow, but

those that are affected have a larger warming enhancement. Multiplying the snow-covered

area decrease by the warming sensitivity (Fig 4.4c) is one way to measure which months are
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most heavily impacted by the warming enhancement. The peak of this metric is in March,

when snow-covered losses and sensitivity are simultaneously relatively high.

4.4 Challenges in Capturing Snow-Albedo Feedback

Dynamical downscaling with WRF shows large warming enhancement due to snow-albedo

feedback. Why don’t the statistical methods generate similar results? BCSD produces a

smoothed warming pattern for all months that is nearly identical that generated by linearly

interpolating the GCMs (Fig 4.2). This is a result of how BCSD generates the fine-scale pat-

terns by linearly interpolating the coarse-scale anomalies and adding them on to the fine-scale

climatology. Thus when the baseline is subtracted from the future, the fine-scale climatology

cancels out, essentially leaving the linearly interpolated coarse-scale GCM pattern. Small

differences may arise due to non-linearities in the bias-correction process. However these dif-

ferences are small and do not add any high-resolution information, since the bias correction

happens at the coarse scale. Therefore, we can’t expect BCSD to pick up snow-albedo feed-

back any better than the GCM itself. Snow-albedo feedback occurs in GCMs (e.g. Hall and

Qu, 2006), but only on spatial scales corresponding to their horizontal resolution ( 100 – 200

km). The width of many of the warming enhancement features found in the WRF patterns

are much smaller, sometimes as little as a single WRF grid box, requiring resolutions O(10

km) or less. Since GCMs cannot resolve these features, they are not present in the BCSD

patterns.

In contrast, BCCA shows some fine-scale structure to the warming pattern. Its

warming patterns have some similar features to the WRF patterns, with strong spatial

gradients related to the mountains and coastline (Fig 4.2). One might expect, a priori,

that by utilizing historical analogs, BCCA should have implicit sensitivity to snow-covered

fraction. Warm days during the historical period should have less snow cover on average,

and hence enhanced warming. However, BCCA shows no evidence of snow-albedo feedback

similar WRF in the Sierra Nevada, San Gabriel, and San Bernardino mountain ranges.
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Figure 4.5: Stations locations used to the create the temperature field for the Maurer et al. (2002)

data (blue crosses) and March ensemble-mean snow-cover decrease. Topography and coastline

shown (black contours).

One explanation for this may be that the relatively narrow bands of localized snow-albedo

feedback warming enhancement are at locations that are not well resolved in the observations.

BCCA relies on a library of daily temperature patterns from the Maurer et al. (2002)

0.125◦ gridded product. This data set is based on data from stations whose locations are at

locations shown in Fig 4.5 (blue crosses). The areas where WRF shows snow cover changes

between baseline and future runs he month of March (Fig 4.5, red shading) are less densely

sampled than other areas of the domain. Locations in the Southern Sierras are especially

under-sampled. If the historical patterns are insufficiently sampled to capture the fine-scale

features in these areas, then surely the climate change pattern produced by BCCA cannot

either.

The above theory could explain why many areas where WRF predicts snow cover

change do not experience enhanced warming under BCCA. However, there are clearly some

stations located in areas of snow loss, and even these locations do not show the warming

enhancement found in WRF (Fig 4.2). Even if BCCA were based on data sets with ideal
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(a) SCF loss (b) SCF loss computed from daily sensitivity to T2 

Figure 4.6: (a) Ensemble-mean March snow-covered fraction loss for the inner domain. (Ensemble-

mean warming for March was 2.0 ◦C averaged over the land areas in this domain.) (b) Estimated

ensemble-mean change in March snow-covered fraction assuming an increase in land-average tem-

perature of a 2.0◦C, using the daily sensitivity of March snow-cover to land-average temperature

from the 1985-2001 period.

spatial sampling it would likely still suffer from a snow feedback that is too weak. This is

because BCCA matches future days with warm days in the historical period, which means

that a future day is treated as an anomaly relative to the baseline climatology instead of

occurring as part of a new climatology where a majority of the days of the year are warmer

than normal. This is an important difference for snow cover, which depends at any given

moment on the integrated history of snowfall and snowmelt over the previous portion of

the snow season. For example, we would expect the snow cover on April 1st to be much

lower if we knew the previous months of the snow season were on average 2 ◦C warmer than

normal, rather than if we only knew that the day of April 1st were 2 ◦C warmer than normal.

Essentially, BCCA relies on the daily sensitivity of snow cover to temperature which is likely

to produce much less snow cover loss than is projected by the WRF simulations. Therefore

the future temperatures predicted by BCCA are probably based on temperature patterns

associated with only minimal snow cover loss, resulting in little warming enhancement.

To test the plausibility of this theory, we compared the snow cover change found
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in the WRF to the snow cover change that would be expected based on using the daily

sensitivity of snow cover to temperature. The sensitivity daily snow-covered fraction to the

corresponding daily domain-average temperature anomaly was calculated for the month of

March from the WRF baseline run. Then this daily sensitivity was used to calculate the

expected snow loss based on a domain-average warming of 2.0 ◦C. (This is the value is

the ensemble-mean warming for the month of March in WRF.) The snow-covered fraction

decrease predicted by the daily sensitivity is far less than the snow-covered fraction decrease

seen in the WRF climate change runs, by as much as a factor of five (Fig 4.6). Thus, the

snow loss implicit in daily historical patterns is indeed much smaller than the snow loss that

would result if the same temperature increase were experienced over the entire snow season

up to that point. This suggests that even with higher sampling of spatial patterns, BCCA

would still largely miss the warming enhancement.

It is unclear if there is an easy fix to incorporate the snow-albedo feedback into the

statistically-downscaled warming projections. On one hand, there is the possibility of directly

adding in this missing warming enhancement to the statistically downscaled output. The

warming enhancement could be parameterized explicitly as the sensitivity of temperature

to snow cover (a constant factor depending on season, quantified above) multiplied by the

snow cover change. However the snow cover change itself depends on the temperature

change, complicating the picture. Thus an iterative method may be needed if the warming

enhancement is included explicitly.

Alternatively, statistical methods like constructed analogs could be adapted to com-

pare more than just daily patterns. Analog methods that match daily temperature patterns

implicitly use only the daily feedback loop between temperature and snow cover. An ideal

historical analog would match both the target day’s temperature and the history of that

temperature over the previous months of the snow season. This way the temperature pat-

tern in the historical analog reflects the appropriate change in snow expected under climate

change, where the majority of the snow season is warmer as well. Adapting the method
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to account for these effects would be challenging, especially when projecting large changes

in warming. For example, it is unlikely to find even a few years in the historical period

where the entire snow season averages 5 ◦C above the baseline climatology, even though

some GCMs predict warming levels that high by the end of the 21st Century (Sun et al. in

press). Thus requiring temperature anomalies to persist for the entire snow season would

dramatically reduce the number of suitable historical analogs. Indeed, this speaks to the

larger issue of likening the effects of a large climate shift to short-lived historical climate

anomalies: the larger the magnitude and longer the duration of anomaly required, the less

chance there is of finding a relevant historical analog.

4.5 Summary of Findings

This study compares three techniques for downscaling GCM temperature changes over

Southern California. The two statistical downscaling techniques are Bias Correction with

Spatial Disaggregation (BCSD) and Bias Correction with Constructed Analogs (BCCA).

The third technique is dynamical downscaling performed using the WRF regional model.

For much of the domain, the three methods produce similar results. The major systematic

difference between the warming patterns is a strong warming enhancement in the mountain

areas in WRF due to snow-albedo feedback. The sensitivity of the warming enhancement

to snow cover loss in WRF is found to be between 2 ◦C and 7 ◦C per 100% loss of snow

cover (completely snow-covered to snow-free) depending on the month. Winter months ex-

hibit lower sensitivities but more total snow cover loss, while later spring months are more

sensitive, but show less snow cover loss.

Since snow-albedo feedback is an important, physically credible process, we would

expect its effects to be visible in downscaled climate projections. However, both statistical

downscaling methods largely miss the additional warming due to snow-albedo feedback, each

for its own reasons. BCSD produces warming patterns that are nearly identical to the linearly

interpolated GCM warming patterns. Since the GCMs are too coarse to resolve the snow
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processes at the necessary spatial detail, the warming enhancement is not found in the BCSD

patterns. While BCCA has the capability to produce warming patterns with much greater

spatial detail, it sill largely misses the warming associated with snow-albedo feedback. This

appears to be because BCCA captures only the effect of that day’s temperature anomaly on

snow cover, effectively underestimating the sensitivity of snow cover to a warmer climate.

Snow cover depends on the past history of the snow season’s accumulation and melts events,

not just the temperature on that day. In fact, based on the WRF data, the snow cover

decrease accompanying a 2 ◦C warmer climate is as much as five times greater than the

snow cover decrease accompanying a daily temperature fluctuation of the same magnitude.

While the comparison region is limited to Southern California in this study, these

same snow albedo effects occur throughout the mountainous western United States. For

example, Salathe et al. (2008) showed that a large portion of the Pacific Northwest was

affected by snow-albedo feedback. A proper assessment of how any of these snow-covered

locations might change must account for the warming enhancement due to snow-albedo

feedbacks.

Users of the BCSD and BCCA downscaled data sets should be aware that WRF

projects 50% more mid-century surface air warming in mountain areas due to snow-albedo

feedbacks. This could have an important effect on impacts studies that use downscaled

data as inputs for surface hydrology models and other processes. Some adjustments to the

statistical methods are explored, but each has foreseeable drawbacks. Ultimately, due to the

complexity the most effective method may be to use dynamical model with a coupled land

surface component for doing regional climate change studies in snow-covered areas.
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