Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Multi-Resolution Isotropic Strain Limiting

Abstract

In this paper we describe a fast strain-limiting method that allows stiff, incompliant materials to be simulated efficiently. Unlike prior approaches, which act on springs or individual strain components, this method acts on the strain tensors in a coordinate-invariant fashion allowing isotropic behavior. Our method applies to both two-and three-dimensional strains, and only requires computing the singular value decomposition of the deformation gradient, either a small 2x2 or 3x3 matrix, for each element. We demonstrate its use with triangular and tetrahedral linear-basis elements. For triangulated surfaces in three-dimensional space, we also describe a complementary edge-angle-limiting method to limit out-of-plane bending. All of the limits are enforced through an iterative, non-linear, Gauss-Seidel-like constraint procedure. To accelerate convergence, we propose a novel multi-resolution algorithm that enforces fitted limits at each level of a non-conforming hierarchy. Compared with other constraint-based techniques, our isotropic multi-resolution strain-limiting method is straightforward to implement, efficient to use, and applicable to a wide range of shell and solid materials. © 2010 ACM.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View