Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5‑fold Twinned Copper Nanowires

Abstract

Copper is uniquely active for the electrocatalytic reduction of carbon dioxide (CO2) to products beyond carbon monoxide, such as methane (CH4) and ethylene (C2H4). Therefore, understanding selectivity trends for CO2 electrocatalysis on copper surfaces is critical for developing more efficient catalysts for CO2 conversion to higher order products. Herein, we investigate the electrocatalytic activity of ultrathin (diameter ∼20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2 reduction. These Cu NW catalysts were found to exhibit high CH4 selectivity over other carbon products, reaching 55% Faradaic efficiency (FE) at -1.25 V versus reversible hydrogen electrode while other products were produced with less than 5% FE. This selectivity was found to be sensitive to morphological changes in the nanowire catalyst observed over the course of electrolysis. Wrapping the wires with graphene oxide was found to be a successful strategy for preserving both the morphology and reaction selectivity of the Cu NWs. These results suggest that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View