Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A change in configuration of the calmodulin-KCNQ channel complex underlies Ca2+-dependent modulation of KCNQ channel activity.

Abstract

All subtypes of KCNQ channel subunits (KCNQ1-5) require calmodulin as a co-factor for functional channels. It has been demonstrated that calmodulin plays a critical role in KCNQ channel trafficking as well as calcium-mediated current modulation. However, how calcium-bound calmodulin suppresses the M-current is not well understood. In this study, we investigated the molecular mechanism of KCNQ2 current suppression mediated by calcium-bound calmodulin. We show that calcium induced slow calmodulin dissociation from the KCNQ2 channel subunit. In contrast, in homomeric KCNQ3 channels, calcium facilitated calmodulin binding. We demonstrate that this difference in calmodulin binding was due to the unique cysteine residue in the KCNQ2 subunit at aa 527 in Helix B, which corresponds to an arginine residue in other KCNQ subunits including KCNQ3. In addition, a KCNQ2 channel associated protein AKAP79/150 (79 for human, 150 for rodent orthologs) also preferentially bound calcium-bound calmodulin. Therefore, the KCNQ2 channel complex was able to retain calcium-bound calmodulin either through the AKPA79/150 or KCNQ3 subunit. Functionally, increasing intracellular calcium by ionomycin suppressed currents generated by KCNQ2, KCNQ2(C527R) or heteromeric KCNQ2/KCNQ3 channels to an equivalent extent. This suggests that a change in the binding configuration, rather than dissociation of calmodulin, is responsible for KCNQ current suppression. Furthermore, we demonstrate that KCNQ current suppression was accompanied by reduced KCNQ affinity toward phosphatidylinositol 4,5-bisphosphate (PIP2) when assessed by a voltage-sensitive phosphatase, Ci-VSP. These results suggest that a rise in intracellular calcium induces a change in the configuration of CaM-KCNQ binding, which leads to the reduction of KCNQ affinity for PIP2 and subsequent current suppression.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View