Skip to main content
Download PDF
- Main
Three‐dimensional whole‐brain simultaneous T1, T2, and T1ρ quantification using MR Multitasking: Method and initial clinical experience in tissue characterization of multiple sclerosis
Published Web Location
https://doi.org/10.1002/mrm.28553Abstract
Purpose
To develop a 3D whole-brain simultaneous T1/T2/T1ρ quantification method with MR Multitasking that provides high quality, co-registered multiparametric maps in 9 min.Methods
MR Multitasking conceptualizes T1/T2/T1ρ relaxations as different time dimensions, simultaneously resolving all three dimensions with a low-rank tensor image model. The proposed method was validated on a phantom and in healthy volunteers, comparing quantitative measurements against corresponding reference methods and evaluating the scan-rescan repeatability. Initial clinical validation was performed in age-matched relapsing-remitting multiple sclerosis (RRMS) patients to examine the feasibility of quantitative tissue characterization and to compare with the healthy control cohort. The feasibility of synthesizing six contrast-weighted images was also examined.Results
Our framework produced high quality, co-registered T1/T2/T1ρ maps that closely resemble the reference maps. Multitasking T1/T2/T1ρ measurements showed substantial agreement with reference measurements on the phantom and in healthy controls. Bland-Altman analysis indicated good in vivo repeatability of all three parameters. In RRMS patients, lesions were conspicuously delineated on all three maps and on four synthetic weighted images (T2-weighted, T2-FLAIR, double inversion recovery, and a novel "T1ρ-FLAIR" contrast). T1 and T2 showed significant differences for normal appearing white matter between patients and controls, while T1ρ showed significant differences for normal appearing white matter, cortical gray matter, and deep gray matter. The combination of three parameters significantly improved the differentiation between RRMS patients and healthy controls, compared to using any single parameter alone.Conclusion
MR Multitasking simultaneously quantifies whole-brain T1/T2/T1ρ and is clinically promising for quantitative tissue characterization of neurological diseases, such as MS.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%