Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Transient [3,3] Cope rearrangement of 3,3-dicyano-1,5-dienes: computational analysis and 2-step synthesis of arylcycloheptanes

Abstract

A simple and modular route to arylcycloheptene scaffolds is reported. The two-step route from Knoevenagel adducts and allylic electrophiles is made possible through the design of a Cope rearrangement that utilizes a "traceless" activating group to promote an otherwise thermodynamically unfavorable transformation. Experimentally, the [3,3] rearrangement occurrs transiently at room temperature with a computed barrier of 19.5 kcal mol-1, which ultimately allows for three-component bis-allylation. Ring-closing metathesis delivers the arylcycloheptane and removes the activating group. This report describes the design and optimization of the methodology, scope and mechanistic studies, and computational analysis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View