Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Rapid deposition of oxidized biogenic compounds to a temperate forest

Abstract

We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2 ), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m-2•s-1). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS -Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View