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Abstract

Finding Genes Related to Disease Using Statistical Learning

by

Benjamin Alan Goldstein
Doctor of Philosophy in Biostatistics

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Alan Hubbard, Chair

This dissertation consists of the analyses of three separate genetic association datasets.
Each represents a unique data structure with a different question of interest that there-
fore require distinct approaches and methodologies. As such, the three substantive
chapters (2-4) can each stand on their own. However, the over-arching question in
each of these studies is the same: which genes (or genetic material) are related to the
disease or outcome being studied. Moreover, while the methodologies are each dis-
tinct, they all incorporate statistical learning methodologies to obtain some modicum
of inference.

Study 1 - As computational power has improved the application of statistical
learning algorithms to finding SNPs related to disease has become more ubiquitous.
The hope is that these algorithms will be more capable than typical marginal testing
in detecting SNPs with higher order effects. The Random Forests (RF) algorithm
is one such algorithm that has seen increased use with genetic data. As part of
its output, RF ranks the predictor variables (SNPs) on their relative importance.
The present study represents the first application of the RF algorithm to Genome
Wide Association (GWA) data and investigates how best to use the algorithm for
this unique data structure. A multiple sclerosis (MS) GWA data set is used for the
analysis. Results indicate the typical tuning parameter settings need to be adjusted
for the high degree of sparsity in the data. Furthermore, most meaningful results were
obtained when both unimportant and overly important SNPs were removed. RF was
able to replicate some previous findings using the same data. Moreover, four genes
not previously associated with MS were identified.

Study 2 - In many analyses, one has data on one level but desires to draw infer-
ence on another level. For example, in genetic association studies, one observes units
of DNA referred to as SNPs, but wants to determine whether genes that are comprised
of SNPs are associated with disease. While there are some available approaches for
addressing this issue, they usually involve making parametric assumptions and are
not easily generalizable. A statistical test is proposed for testing the association of
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a set of variables with an outcome of interest. No assumptions are made about the
functional form relating the variables to the outcome. A general function is fit using
any statistical learning algorithm, with the SuperLearner algorithm suggested. The
parameter of interest is the cross-validated risk and this is compared to an expected
risk. A Wald test is proposed using the influence curve of the cross-validated risk to
obtain the variance. It is shown both theoretically and via simulation that the test
maintains appropriate type I error control and is more powerful than parametric tests
under more general alternatives. The test is applied to an MS candidate gene study.
Three separate analyses are performed highlighting the flexibility of the approach.

Study 3 - Secondary analyses, such as Gene Ontology and Motif analysis, have
become central components of gene expression experiments, allowing researchers to
derive biological understanding from the set of genes that are differentially expressed.
An important statistical task is determining which genes should be passed on to such
programs and how the genes should be grouped for analysis. The typical approach is
to cluster the set of differentially expressed genes, and pass these clusters on to the
secondary analyses. However, many expression experiments have specific hypotheses
which allow one to analyze the genes and group them in a more targeted approach.
To illustrate the utility of being more specific, a gene expression study of C. elegans is
used where a particular outcome was observed and hoped to be explained. A general
model is fit and analyzed to estimate the parameters corresponding to the specific
hypothesis, leading to four natural groupings of the differentially expressed genes.
These groupings lead to meaningful results in the secondary analyses that allow for
the biologist to make robust hypotheses that are experimentally confirmed. It is
shown that a traditional approach would not have yielded such robust findings.
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Chapter 1

Introduction

The following pages represent much of the work I have performed over the past
three and half years as a doctoral student. These chapters represent three distinct
papers that can easily stand on their own, each motivated from a different dataset.
I believe the methods one uses should be motivated by the data one has and the
questions one wants to answer. For this reason, each chapter consists of very dif-
ferent primary methods. However, taken together they represent my interest in and
approach to statistics. The three chapters can also be read as illustrating what I see
as three of the primary roles of a biostatistician: developing new methods (Chapter
3), evaluating existing methods (Chapter 2) and analyzing data (Chapter 4).

The common question overriding most of this work is identifying which genes
are related to an outcome (usually disease) in large genetic studies. To answer this
question I have focused on the use of computational tools, particularly statistical
learning algorithms1. These projects have allowed me to bridge two sides of statistics:
inference & prediction. While these genetic studies are exploratory in nature, the
questions asked in the following pages are primarily ones of inference: which genes are
related to disease? However, due to the complexity (both biological and statistical) of
genetic data, typical inferential tools are ill suited for answering this question. This
is where statistical learning comes in. These methods allow the user to flexibly search
through the data, finding complex relationships that provide insight into the data
problem. They are often capable of handling the high dimensional and complex data
encountered in genetics. While most of these algorithms were developed within the
domain of computer science, statisticians have been able to provide great insight into
their properties. I hope that the following pages continue that line of insight.

1I use the term “statistical learning” distinctly from the more common “machine learning.”
From my perspective the two refer to the same set methodologies: computational algorithms aimed
at searching for the best relationship in the data. The distinction applies to the approach taken by
the user. Using these algorithms as a “black box” is the domain of machine learning. Delving into
and trying to understand the statistical properties of these algorithms and optimizing them in turn
is statistical learning.
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Chapter 2 (along with the appendix) illustrates my work with the Random Forests
(RF) algorithm. This was my first project as a doctoral student and the task was
simply to determine whether the algorithm could be used with genome wide associa-
tion (GWA) studies. GWA studies are characterized by having 100’s of thousands of
units of genetic information for thousands of people. Adding to the difficulty of the
problem, it is presumed that most of the genetic data is not related to the outcome
of interest. At the time no one had attempted to use this (or any) algorithm with
this large a dataset. However, with advanced computational ability it has become
feasible. The general conclusion from the work with RF is that, yes, meaningful in-
formation can be extracted from GWA data. However, unsurprisingly, the typical
approach to using the algorithm needed to be changed - suggestions for these changes
are provided. Chapter 2 represents the published work on this topic. Since I found
the theory behind RF particularly interesting, I have written about this in the ap-
pendix. This section provides insight into the value added when one understands the
algorithms that they use. These two sections do not represent all of my work on RF.
In fact, I still consider this an unfinished project. My hope was to derive statistical
properties for the variable importance measures to aid in variable selection (i.e. in-
ference). However, after much effort, the work proved fruitless and I had to conclude
that either (a) none existed or (b) they did exist but I was incapable of discerning
them. The gigabytes of simulation output serve as a reminder that not all projects
end in pretty papers.

While the RF project was “given” to me, Chapter 3 on gene based tests arose more
organically. Like all good projects, there are multiple roots to its formulation. The
idea began with my work on RF, where I wanted to ask the simple question of whether
the prediction I was getting was “good” i.e. better than what I’d expect by chance.
My thought was that if it wasn’t, then one should not really look at the variable
importance measures. Later, I was at the American Society for Human Genetics
conference where the topic of the day was rare variant analysis. Since analyzing
individual rare variants lacks statistical power, the advocated approach was to sum
up all the rare variants in a gene. While this made sense for rare variants it forced
me to consider, why not do this for all SNPs in a gene. Furthermore, instead of just
summing up the SNPs, why not combine them in a flexible manner as one would do
with a statistical learning algorithm. These thoughts grew into the work of Chapter
3.

While the initial method was motivated by genetic data, it also became quite
clear to me that it was generally applicable outside of genetics. For this reason I have
taken a very general approach with the development of the test statistic. However,
it is within genetics that the applications are particularly diverse. The flexibility of
the method allows one to ask (and hopefully answer) many subtle and interesting
questions. I have tried to illustrate this with three different and interesting questions,
all derived from the same dataset.

The final chapter is a departure from the work of the previous two, primarily
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because I was working with very different data. To expand my exposure, I began a
collaboration with biologists studying gene expression in model organisms (i.e. C.
Elegans, mice, drosophila). The aim of the lab was to find genes involved in extended
lifespan. Chapter 4, represents the results of one of these analyses that was partic-
ularly successful. Due to the nature of the experiment and the particular question
asked, I was able to analyze the data in a targeted way as opposed to the more gen-
eral approaches typical of these studies. A particularly unique aspect of working with
model organisms, is that one is able to follow-up on the derived results and confirm
them experimentally. For a statistician this is both exciting and intimidating. It is
rare that our analyses can be confirmed to be correct, but also rare that they can
be definitively invalidated. Fortunately many of the proposed genes were validated.
While methodologically most distinct, at its core, this work illustrates the power of
asking targeted and specific questions about ones data, present in the earlier chapters.

In total, the following is about what questions do we want to ask of the data
and how can we best answer them. For a science, statistics has remarkable space for
creativity. I find that the best work occurs when one thinks about the data creatively.
I hope the follow pages illustrate this concept.
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Chapter 2

Approaches and Considerations for
Applying Random Forests to
Genome-Wide Association Studies

2.1 Background

Genome-wide association (GWA) studies are a well-established approach for iden-
tifying genetic regions of interest for many common complex diseases and traits
[WTCCC, 2007]. These studies are characterized by examining genetic information
from thousands of individuals, at hundreds of thousands of loci across the human
genome known as single nucleotide polymorphisms (SNPs). The standard assump-
tion is that either variation at particular loci leads to changes in biological function,
which in turn leads to disease, or that associated loci are in linkage disequilibrium
(LD) with other disease causing variants. By examining genotypes derived from
individuals with and without the disease or trait of interest, one can discern such
variation. This is typically done by performing a marginal chi-square test with some
control for multiple testing. However, since each causal SNP will confer risk under
an unknown and different genetic model (i.e. additive, dominant, recessive), and
may also interact with other SNPs (epistasis), a marginal test will be a less success-
ful approach for finding the association [Heidema et al., 2006]. Ideally, one would
simply test all possible genetic models of association, including those for interaction.
However, in the context of a GWA study, this is not computationally feasible.

Recent emphasis has been on the use of machine learning techniques to iden-
tify potential causal variants. Such techniques include logic regression [Kooperberg
and Ruczinski, 2005], multi-dimensional reduction (MDR) [Motsinger and Ritchie,
2006], support vector machines (SVM) [Yoon et al., 2003], and Random Forests (RF)
[Bureau et al., 2005]. While these techniques are each unique, they have a shared
characteristic whereby each algorithm searches over a transformed version of the fea-
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ture space attempting to find the optimal solution to the problem while minimizing
some empirical risk. Importantly, the algorithms make minimal assumptions about
the causal mechanism. This means these algorithms may be more suited for identi-
fying variants where the causal mechanism is unknown and complex, as is the case
with complex genetic diseases.

Each of these methods has utility for finding structure in genetic data, where the
best algorithm will depend on the true nature of the underlying association. However,
the focus of the current study is RF because of the ability of this method to identify
variables of interest from very large datasets. Equally important, RF is a relatively
straightforward algorithm, both to understand and interpret. Unsurprisingly, there
has been a slow but steady use of RF in the genomic literature since its introduction
in 2001 [Bureau et al., 2005, Dı́az-Uriarte and Alvarez de Andrés, 2006, Glaser et al.,
2007, Lunetta et al., 2004, Meng et al., 2009, Nonyane and Foulkes, 2008, Sun et al.,
2007].

RF was first introduced by Leo Breiman [Breiman, 2001] and is a natural extension
of his previous work on classification and regression trees (CART) [Breiman et al.,
1984] and bootstrap aggregating (or bagging) [Breiman, 1996a]. CART is an effective
tool for building a classifier, but tends to be data dependent, where even small data
changes can result in different tree structures. Bagging is a process whereby data are
sampled with replacement and the classifier is grown using this bootstrap sample.
After many iterations, results are aggregated over all trees to create a less variable
classifier with a lower prediction error when compared to the original classifier. In
bagging, the variance reduction is limited by the correlation between trees; as cor-
relation is decreased or minimized, the potential for reduction is increased. The RF
algorithm (see Figure 2.1) begins by bagging CART trees. To reduce the correlation
between trees, instead of searching over all p variables at each node for the optimal
split, a search is performed over a random subset, m ≤ p, at each node. The algo-
rithm continues to split the data until no further splits are possible, either because
the node is pure (all of one class), or there are no more variables upon which to split.
While the CART algorithm calls for the tree to be pruned for increased stability, RF
leaves the tree unpruned, as bagging is used to decrease the variance created by the
lack of pruning.

An aspect of the bagging procedure is that a natural, internal error rate is created.
Within each bootstrap sample, approximately 37% of the original data will be unse-
lected, referred to as the out-of-bag (OOB) sample [Breiman, 1996b]. RF passes OOB
samples down the tree to obtain a class prediction. After the full forest is grown, the
class predictions are compared to the true classes generating the out-of-bag error rate
(OOB-ER). This error-rate can be used to compare the prediction accuracy of one
set of inputs to another, behaving similarly to cross-validation [Hastie et al., 2009].

An appeal of RF is that the forest of trees contains a large amount of information
about the relationship between the variables and observations. This information can
be used for prediction, clustering, imputing missing data, and detecting outliers. Of
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Figure 2.1: The RF algorithm begins by selecting a bootstrap sample of the data (1).
A random subset of the variables is selected (2) and searched over to find the optimal
split (3). This is repeated until an unpruned CART tree is formed (4). The data
not part of the bootstrap sample is run down the tree to derive the error rate and
measures of VI (5). This is repeated until a full forest is grown (6).

great interest to genetic epidemiologists, is the ability of RF to identify important
variables. After each OOB sample is passed down the tree to produce a prediction
error for the sample, one then permutes each variable in the tree across samples, and
passes the same observation down the tree again. Any increase in misclassification
helps determine the importance of that variable. This type of variable importance
(VI) can be derived from disparate variable types (categorical, ordinal, continuous),
and makes no assumptions about the data generating distribution for the outcome.
However, unlike a formal hypothesis, it is best to consider the output of a RF analysis
as a rank ordering of important variables worthy of further investigation, not as a
list of variables with a known Type I error rate. Moreover, RF VI is best suited for
identifying regions of interest as opposed to actual causal variants, where other more
targeted methods are preferable [Bembom et al., 2007].

Utilization of RF requires choosing between three tuning parameters: (1) number
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of trees to grow (ntree), (2) number of variables to select per-node (mtry), and in
the case of classification, (3) class weights. While most applications in the literature
have successfully implemented RF using default settings, applying RF to large GWA
datasets is more complicated. Few studies have examined the various tuning parame-
ters. The two most comprehensive reviews concluded that RF predictions were stable
and robust to small fluctuations in tuning parameters settings, but often there were
optimal settings [Dı́az-Uriarte and Alvarez de Andrés, 2006, Genuer et al., 2008].
While both studies provide useful information, the largest dataset examined by each
contained only 9,868 predictors and 78 observations. This is obviously much smaller
than the data analyzed in a typical GWA study.

Further complicating RF analysis, beyond the large feature space, is that GWA
data tend to be highly correlated, with potentially, many regions of LD among SNPs.
Also, the data are assumed to be highly sparse, meaning there is an apriori assumption
that the vast majority of SNPs will not be associated with the disease. While many
of these issues have been discussed in the literature, none have been considered in the
context of a large GWA dataset. Moreover, many of the strategies one would employ
with smaller data sets (e.g. permutation, cross-validation etc.) are not feasible due to
computational constraints. Instead of working with simulated data which can be less
realistic, we investigated the application of RF using a large multiple sclerosis (MS)
GWA study dataset comprised of cases and controls. The aim of the current study
was two-fold: (1) to illustrate how one would go about tuning RF for a particular
GWA analysis, and (2) to determine whether RF would duplicate results found in the
original MS GWA study, as well as identify any new loci of interest.

2.2 Methods

2.2.1 Genotypes

Data were derived from a 2007 MS case-control study conducted by the Interna-
tional Multiple Sclerosis Genetics Consortium [Hafler et al., 2007] and were comprised
of genotypes for a total of 325,807 SNPs (Affymetrix GeneChip Human Mapping 500K
array) in 931 MS cases and 2,431 controls (n = 3,362). Stringent quality control (QC)
analyses were applied to the dataset as previously described, including the removal
of population outliers [Hafler et al., 2007]. SNPs with greater than 10% missing data
were removed. The genetic inflation factor was 1.06, indicating negligible population
stratification [Hafler et al., 2007].

Less than 1% of the genetic data contained missing values. There are a few
different ways missing data can be handled within RF. However, since the data were
derived from a dense SNP marker panel and had minimal missingness, any missing
values were imputed with Beagle 2.13 [Browning and Browning, 2007]. Allelic data
were then recoded into genotype format using PLINK 1.05 [Purcell et al., 2007],
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producing three categories for each SNP (0, 1 and 2 copies of the minor allele). Since
the optimal binary split is found at each node, this allows for the algorithm to be
agnostic to recessive, dominant or additive effects. An allelic chi-square test (df = 1)
was performed to calculate marginal associations for comparison.

2.2.2 RF Implementation

The RF code was originally written in Fortran by Breiman and Cutler. There is
also an R package randomForest based on the same Fortran code [Liaw and Wiener,
2002]. Neither implementation could be used for the large GWA dataset in the cur-
rent study. The original RF code has been licensed to Salford Systems[Sal], and they
recently optimized the Fortran version, v.6.4.0.179, for application to large datasets.
In preliminary testing of small datasets, similar results were found between the three
implementations of RF (data not shown). RF was implemented in a server environ-
ment with 8 2/GHz cpus and 32GB of memory. Run time was dependent on data
size and mtry, ranging from a few seconds per tree to over 10 minutes per tree (∼ 1
week for a full forest).

2.2.3 Tuning Parameters Considered

Number of variables to choose per node (mtry)

The primary tuning parameter in RF is the number of variables to search at
each node (mtry). This parameter controls the bias-variance trade-off. Searching
over fewer variables per node will produce less correlated trees, reducing the overall
variance of the prediction. However, this will also decrease the accuracy of each
individual tree, increasing the bias. The mtry can also be viewed as controlling the
complexity of the model, with a smaller value leading to a more complex, less sparse
solution (see below). Breiman originally suggested choosing the int(log2 p+ 1) of the
number of predictors per node. In the R implementation, the default value is the
square root of the number of predictors.

For a GWA dataset, this would entail examining approximately 550 SNPs per
node. As noted by Breiman, when there are many weak predictors, this number may
need to be increased. It has also been noted that mtry is more important for VI
calculation than for prediction, and that with sparse data, mtry = p leads to greatest
stability [Genuer et al., 2008]. A coarse search for the optimal mtry was performed in
the current study using mtry values of 1, 2

√
p, 0.1p, 0.5p and p. The parameterization

that produced the lowest final OOB-ER was chosen as the optimal mtry.

Number of Trees to Grow (ntree)

Another important consideration is how many trees to grow. This is also a dataset
dependent factor, where stronger predictors lead to quicker convergence. While for



9

prediction purposes few trees are often necessary, and the OOB-ER will generally
converge rapidly, for VI, more trees will generally lead to refinement and stability in
VI [Genuer et al., 2008].

The main trade-off with growing a larger number of trees is the computation
cost required. In the current study, trees were grown until the OOB-ER stabilized.
Additional trees were then grown to ensure stability.

Weighting

The final tuning parameter, which was not considered in this analysis, is weighting.
In classification, with uneven classes, an unweighted classification scheme will be
biased towards the majority class. The typical strategy is to re-weight the classes so
that they are balanced, the practice used within the Salford Systems implementation
of RF, and the default in the R implementation. Unfortunately, class weighting
cannot be altered in the Salford Systems version, so it could not be tested as a tuning
parameter. However, internal testing on a more flexible version of RF showed no
added benefit to changing the weighting.

2.2.4 Data Configurations

Sparsity Pruning

As noted, it is expected that the vast majority of SNPs in a GWA study do not
impact risk for disease, and therefore, are simply noise. The goal of any algorithm
should be to separate noise from signal, providing a sparse solution. A sparse solution
is indicated when the VI is either 0 or negative. Such a VI indicates that the variable
was either never selected into a tree, or when it was selected, permutation did not
increase the prediction error. Sparse solutions provide a convenient way to remove
unimportant data from the analysis.

Sparsity is a function of both mtry and ntree, with a higher mtry leading to
greater sparsity and a higher ntree leading to less sparsity. One proposed strategy
is to sequentially remove genes by dropping the bottom 20% or 50%, and perform
successive runs until there is a noticeable increase in prediction error [Dı́az-Uriarte and
Alvarez de Andrés, 2006]. Utilizing the natural sparseness in the dataset, the results
of each RF run were examined and sparse SNPs were dropped. The RF analysis was
then re-run until prediction error stabilized. While this will give a biased estimate of
the prediction error for the model [Svetnik et al., 2004], it can still be used to judge
model quality. This sub-sampling process was repeated in the current study until the
final OOB error-rate stabilized or increased.
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Removing Strong Associations

RF searches over multiple variables finding solutions based on joint and conditional
effects. Since VI score is dependent on where a variable lies in the tree, it is possible
that variable with strong effects may mask weaker, yet important effects by pushing
them down the tree. It is well established that the HLA region within the major
histocompatibility complex (MHC) on chromosome 6p is strongly associated with MS
[Oksenberg and Barcellos, 2005]. Therefore, to search for weaker non-MHC effects,
RF analysis was performed in the current study after removing chromosome 6p marker
data.

Linkage Disequilibrium

An important consideration when applying RF to GWA data is the large degree
of LD among SNPs. VI is calculated from the number of trees in which a variable
appears. Therefore, two SNPs that are in perfect LD will appear in trees about half
as often as each individual one may appear by itself, effectively lowering the VI of
each SNP. While this does not present a problem for prediction, it can skew the VI
rankings [Genuer et al., 2008]. Two proposed solutions have been to calculate VI
independently of the number of trees in which the variable appears [Meng et al.,
2009] or as conditional on other variables in the tree [Strobl et al., 2007].

PLINK [Purcell et al., 2007] provides two methods of LD pruning based on r2 and
R2. r2 is a traditional pairwise LD measure, though not based on phased haplotypes.
R2 is the multiple correlation coefficient based on a sliding window. Using PLINK,
SNPs with a multiple correlation coefficient (R2) of 0.99, 0.90, 0.80, 0.50 and 0.33 were
removed from the MS case-control dataset for comparison. This resulted in pruning
between 22% and 76% of the original data which had the side benefit of increasing
computational efficiency. While this does not necessarily aid in determining the causal
SNP (that one may be pruned out) it does improve detecting a region of interest.

2.2.5 Reliability of Results Obtained from RF

Since RF is a Monte-Carlo process, random variation may influence VI results,
particularly if enough trees are not grown. While, work has indicated that RF results
are relatively stable [Genuer et al., 2008] and our own internal testing has confirmed
this, it is important to grow large forests and do multiple runs when possible. Re-
liability of final RF results was examined by re-running RF with the final dataset
configuration, parameterization and sub-sampling process, changing just the seed in
the random number generator. While more than one re-run would be ideal, the VI
measures are unlikely to be unstable given that two runs were performed.
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2.2.6 Comparison of RF Results to Original GWA study

The original MS GWA study identified, with replication, 16 SNPs across 13 genes
as associated with MS [Hafler et al., 2007]. An important consideration for the current
study was whether RF could identify additional genes of interest, as well as duplicate
the original findings based on univariate testing. Duplication was considered present
when a SNP identified by RF was: (1) among the original 16 SNPs, or (2) a SNP
that was tagged by one of the 16 SNPs identified in the original GWA study. PLINK
was used to identify tagged SNPs using an r2 threshold of 0.5.

2.2.7 Analysis Strategy

Figure 2.2 presents the analysis plan. The primary method for choosing tuning
parameters was minimization of the OOB-ER, as this is the best indication of model
quality. Determining how many results to report is more subjective since the VI
measure does not constitute a formal hypothesis test. To help guide interpretation of
RF results for follow-up, we plotted VI scores. A sloping line with an elbow (Figure
2.3 was observed most often around the top 25, so this was chosen as the cutoff
for an important result. While this is an inherently adhoc solution to determining
appropriate cutoffs, to this point solid statistical properties of VI scores have not been
determined to aide in a more objective approach.
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Determine optimal 
values of mtry 

and ntree
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Figure 2.2: Flow Plan for RF analysis. The full MS case-control dataset was analyzed,
searching for the optimal mtry & ntree, along with sparsity pruning, as necessary. Two
runs were then conducted, one without any 6p genotypes, and one with data for a
single 6p SNP. Finally, LD pruning was explored. After the best data configuration
was found, RF analysis was re-run to examine stability of results. The final RF results
were compared to the original GWA results [Hafler et al., 2007].
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Figure 2.3: The three plots represent the VI measures for the full dataset with chro-
mosome 6p data removed, the R2 = 0.99 run and the R2 = 0.90 run. An elbow is
present in all three plots around 25 markers (designated with the vertical line).
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2.3 Results

2.3.1 Tuning Parameters

Number of variables to choose per node (mtry)

The first parameter considered was mtry since this has the greatest impact on the
OOB-ER. Figure 2.4 shows the OOB-ER for different values of mtry. The typically
suggested value of mtry of around 2

√
p is not sufficient for GWA data, as the OOB-

ER is minimized with an mtry around .1p. Among the higher mtry values, there was
little distinction between them with regard to OOB-ER. The top SNPs from the mtry
of .1p are shown in Table 2.1.
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Figure 2.4: An examination of the error-rate across different mtrys. The larger mtrys
of .1p and above clearly lead to a much lower error rate than the more traditional
lower values. .1p seems to minimize the overall OOB error-rate though not by much.
Convergence seems to occur around 200 400 trees.

Another consideration is the sparsity induced by the mtry factor. As expected,
sparsity increases with mtry, though this is most dramatic after increasing to mtry =
p (Figure 2.5).

Number of Trees to Grow (ntree)

Using mtry = .1p, forests of size 50, 250, 500, 1,000, 1,500 and 2,000 trees were
grown. It is clear that the OOB-ER leveled off around 250 trees (see Figure 4) and



15

●

●
● ●

●

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

mtry (# SNPs selected)

%
 S

p
a

rs
e

1 2*sqrt 10% 50% All

Figure 2.5: As expected, sparsity increases as a function of mtry. There is the most
dramatic increase after moving from an mtry of .5p to p.

1,000 trees was used as a reliable forest size. However, for datasets without chromo-
some 6p and only weak predictors (see below), it took more than 4,000 and sometimes
8,000 trees for convergence. In those cases, 5,000 and 10,000 trees, respectively, were
grown. More trees led to a less sparse result, as expected, with nearly a linear decrease
through 2,000 trees.
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Top SNPs identified by Random Forests in MS case-control dataset

Chr SNP Gene MAF Rank CHISQ P-Value

6 rs3129900 C6orf10 0.17 1 272.2 3.75× 10−61

6 rs3129934 C6orf10 0.17 2 274.4 1.28× 10−61

6 rs9270986 HLA Tag SNP 0.17 3 274.6 1.14× 10−61

6 rs3129768 HLA-DQA* (70bp) 0.20 4 238.9 3.14× 10−53

6 rs2647046 HLA-DQA2* (8.5kb) 0.39 5 113.9 1.38× 10−26

6 rs3129932 C6orf10 0.23 6 219.8 1.02× 10−49

6 rs9275572 HLA-DQA2* (2.1kb) 0.42 7 101.5 7.24× 10−24

6 rs3131294 NOTCH4 0.14 8 215.4 9.26× 10−49

6 rs910049 C6orf10 0.24 9 222.2 2.98× 10−50

6 rs2894249 C6orf10 0.23 10 220.7 6.28× 10−50

6 rs3135377 HLA-DRA* (80.6kb) 0.21 11 217.9 2.60× 10−49

6 rs9469220 HLA-DQA2* (18.5kb) 0.50 12 99.2 2.28× 10−23

6 rs7194 HLA-DRA 0.40 13 129.7 4.69× 10−30

6 rs6457620 HLA-DQB1* (137.5kb) 0.49 14 96.03 1.13× 10−22

6 rs3130287 TNXB 0.15 15 181.2 2.72× 10−41

6 rs6457617 HLA-DQB1 (137.4kb) 0.49 16 96.03 1.13× 10−22

6 rs6936204 C6orf10* (14.6kb) 0.36 17 113.3 1.83× 10−26

12 rs1805755 M6PR ¡.01 18 73.42 1.05× 10−17

12 rs1716167 MPHOSPH9 0.21 19 22.38 2.23× 10−6

7 rs17708673 C7orf25 (106.2kb) 0.16 20 6.357 1.17× 10−2

6 rs9268877 HLA-DRA* (126.3kb) 0.42 21 74.57 5.85× 10−18

6 rs9276440 HLA-DQA2 0.45 22 83.75 5.63× 10−20

6 rs2621383 HLA-DOB* (825.5kb) 0.37 23 82.72 9.44× 10−20

22 rs80515 FAM19A5* (1.4mb) 0.10 24 3.751 5.28× 10−2

20 rs2425754 CDH22* (580.3 kb) 0.15 25 4.193 4.06× 10−2

Table 2.1: The top 25 SNPs from RF analysis of the whole dataset are shown above.
Most of the top SNPs are on chromosome 6p within the HLA region. The minor
allele frequency (MAF) is derived from controls and the χ2-statistic is from univariate
testing. *Indicates that the gene is the closest gene with distance.
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2.3.2 Data Configurations

Sparsity Pruning

When using the full dataset for RF analysis, SNPs within the HLA region of
chromosome 6p were consistently selected as the most important variables (Table
2.1). This is not surprising, as some SNPs in that region had a marginal χ2-statistic
as large as 274. The final error rate of 35% is identical to a simple classification based
just on genotypes for the three most highly associated SNPs (rs3129900, rs3129934,
rs9370986). RF results based on analysis of all SNPs from chromosome 6p resulted
in the same 35% error rate.

Removing Chromosome 6p

After removing all SNPs on chromosome 6p (p = 8,335), the initial run of 317,472
SNPs produced an error-rate of 48% after 1,000 trees, and using both an mtry of
.1p and p. The resulting forest based on mtry of .1p was 74% sparse (82,527 SNPs
retained). Using mtry = p, the forest was 99% sparse (4,219 SNPs retained).

For the mtry = p run, re-running RF analysis with the reduced dataset produced
an error-rate of 26%, and required approximately 4,000 trees to converge. Repeating
this sub-sampling process two more times produced an error-rate of 21%. After a
fourth run, the OOB error-rate remained at 21%, suggesting that three sub-samples
were sufficient. For the 10% run, the final OOB error-rate was 37% and contained
25,000 SNPs.

Overall, results suggest there is predictive structure (differences between MS cases
and controls) beyond chromosome 6p, and that aggressive pruning of the initial mtry=
p is more effective for discovering that structure. The top 25 SNPs derived from RF
analysis without chromosome 6p markers are shown in Table 2.2.

Linkage Disequilibrium

The final consideration was the effect of pruning SNPs based on LD. The dataset
without any markers for chromosome 6p was used and the same sub-sampling strat-
egy was followed. Figure 2.6 shows final error-rates for the six LD configurations
investigated, along with the full dataset. The number of SNPs in each configuration
is included.

While pruning past an R2 of 0.90 (LD90) results in a higher final error-rate and
suggests a loss of information, it is hard to determine which approach is best when
solutions based on full data, LD99 and LD90 are compared. Examination of the
top 25 SNPs from the three configurations (full, LD99 and LD90; Tables 2.2 - 2.4),
reveals that most of the SNPs were located within a gene (14, 14, and 15 respectively).
However, the LD90 solution identified SNPs within more unique genes (14) compared
to the other configurations (9 and 11). In addition to identification of potentially
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Figure 2.6: In the red line we see the OOB error rate across the different LD prunes.
There is little information lost going from the full data to pruning at 99% and even
90%. Thereafter there is more loss of information. The blue line shows the number
of SNPs that were in each RF analysis.

functional SNPs, the majority of top results show strong marginal associations (p
' 10−5) but do not meet established criteria for genome-wide significance [Pearson
and Manolio, 2008]. When the top 25 SNP results from each configuration were
compared, both overlapping and unique genes are observed. Genes not previously
associated with MS were among the top hits, specifically CTNNA3, MPHOSPH9,
PHACTR2, and IL7.
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Top SNPs identified by Random Forests in MS case-control dataset
without 6p data

Chr SNP Gene MAF Rank CHISQ P-Value

12 rs1805755 M6PR < 0.01 1 73.42 1.05× 10−17

7 rs6467970 SEMA3A* (44.1 kb) 0.19 2 19.71 9.00× 10−6

10 rs10823051 CTNNA3 0.16 3 17.61 2.71× 10−5

1 rs10754012 RGS1* (3.3 mb) 0.23 4 22.24 2.41× 10−5

12 rs1716167 MPHOSPH9 0.21 5 22.38 2.23× 10−6

6 rs1015340 PHACTR2 0.47 6 14.86 1.16× 10−4

10 rs7068990 PPAPDC1A* (137.6 kb) 0.23 7 17.65 2.65× 10−5

8 rs1466526 FAM164A* (86.0 kb) 0.25 8 15.60 7.84× 10−5

6 rs1040638 PHACTR2 0.48 9 13.82 2.01× 10−4

7 rs16217 NPY* (292.9 kb) 0.26 10 7.14 7.53× 10−3

12 rs1106240 PITPNM2 0.20 11 18.71 1.52× 10−5

8 rs4739135 FAM164A* (98.8 kb) 0.19 12 16.33 5.34× 10−5

18 rs4798684 ADCYAP1* (19.8 kb) 0.30 13 13.41 2.51× 10−4

6 rs1015341 PHACTR2 0.47 14 14.88 1.14× 10−4

12 rs2695478 MPHOSPH9 0.20 15 17.30 3.19× 10−5

1 rs11800848 EVI5 0.26 16 19.04 1.28× 10−5

9 rs6993386 IL7 0.32 17 17.95 2.27× 10−5

6 rs6915752 PHACTR2 0.45 18 17.71 2.57× 10−5

20 rs2223712 BTBD3* (3.6 kb) 0.19 19 11.86 5.73× 10−4

10 rs7092549 PPAPDC1A* (140.0 kb) 0.23 20 17.06 3.62× 10−5

6 rs9376783 PHACTR2 0.45 21 17.26 3.27× 10−5

17 rs17652139 CCL2* (3.0 mb) 0.23 22 11.81 5.88× 10−4

7 rs740295 MGC87402 0.31 23 7.89 4.96× 10−3

5 rs156823 ARL15 0.47 24 12.13 4.97× 10−4

18 rs7241142 ADCYAP1* (20.7 kb) 0.30 25 10.81 1.01× 10−3

Table 2.2: The top 25 SNPs from RF analysis of the dataset without chromosome 6
SNPs are shown above. The minor allele frequency (MAF) is derived from controls
and the χ2-statistic is from univariate testing. *Indicates that the gene is the closest
gene with distance.
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Top RF SNPs in the MS case-control dataset with LD pruning R2 = 0.99

Chr SNP Gene MAF Rank CHISQ P-Value

7 rs6467970 SEMA3A* (44.1 kb) 0.19 1 19.71 9.00× 10−6

8 rs1466526 FAM164A* (86.0 kb) 0.25 2 15.60 7.84× 10−5

12 rs1716167 MPHOSPH9 0.21 3 22.38 2.23× 10−6

10 rs10823051 CTNNA3 0.16 4 17.61 2.71× 10−5

1 rs11800848 EVI5 0.26 5 19.04 1.28× 10−5

17 rs17652139 CCL2* (3.0 mb) 0.23 6 11.81 5.88× 10−4

6 rs1015341 PHACTR2 0.47 7 14.88 1.14× 10−4

7 rs16217 NPY* (292.9 kb) 0.26 8 7.14 7.53× 10−3

1 rs12743520 EVI5 0.26 9 18.61 1.61× 10−5

6 rs1040638 PHACTR2 0.48 10 13.82 2.01× 10−4

18 rs4798684 ADYCAP1* (19.8 kb) 0.30 11 13.41 2.51× 10−4

8 rs6993386 IL7 0.32 12 17.95 2.27× 10−5

1 rs2760524 RGS1* (3.3 mb) 0.19 13 20.00 7.76× 10−6

10 rs7092549 PPAPDC1A* (140.0 kb) 0.23 14 17.06 3.62× 10−5

20 rs2223712 BTBD3* (3.6 kb) 0.19 15 11.86 5.72× 10−5

7 rs740295 MGC87402 0.31 16 7.90 4.96× 10−5

1 rs282177 RPS6KA1 0.26 17 17.01 3.72× 10−5

6 rs6570578 PHACTR2 0.45 18 17.00 3.72× 10−5

10 rs7068990 PPAPDC1A* (137.6 kb) 0.23 19 17.65 2.65× 10−5

1 rs1359062 RGS1* (3.3 mb) 0.19 20 18.49 1.71× 10−5

2 rs698853 LOC100302652 0.28 21 16.75 4.26× 10−5

7 rs156293 NPY* (313.8 kb) 0.22 22 9.56 1.99× 10−5

16 rs6499946 KLKBL4 0.22 23 12.83 3.41× 10−4

2 rs7583622 ASB3 0.23 24 17.07 3.60× 10−5

20 rs17408919 PAK7 0.23 25 11.63 6.50× 10−4

Table 2.3: The top 25 SNPs from RF analysis of the dataset without chromosome
6 SNPs are shown above in the R2 = 0.99 runs after 3 sub-samplings. Results are
similar to analysis of full dataset. *Indicates that the gene is the closest gene with
distance.
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Top RF SNPs in the MS case-control dataset with LD pruning R2 = 0.90

Chr SNP Gene MAF Rank CHISQ P-Value

7 rs6467970 SEMA3A* (44.1 kb) 0.19 1 19.71 9.00× 10−6

8 rs1466526 FAM164A* (86.0 kb) 0.25 2 15.60 7.84× 10−5

10 rs10823051 CTNNA3 0.16 3 17.61 2.71× 10−5

1 rs10754012 RGS1* (3.3 mb) 0.23 4 22.24 2.41× 10−6

6 rs1040638 PHACTR2 0.48 5 13.82 2.01× 10−4

8 rs4739135 FAM164A* (98.8 kb) 0.19 6 16.33 5.34× 10−5

18 rs4798684 ADCYAP1* (19.8 kb) 0.30 7 13.41 2.51× 10−4

10 rs7092549 PPAPDC1A* (140.0 kb) 0.23 8 17.06 3.62× 10−5

14 rs10483442 NPAS3 0.19 9 13.88 1.95× 10−4

20 rs2223712 BTBD3* (3.6 kb) 0.19 10 11.86 2.71× 10−4

12 rs1106240 PITPNM2 0.20 11 18.71 1.52× 10−5

5 rs156823 ARL15 0.47 12 12.13 4.97× 10−4

9 rs10975130 KANK1 0.16 13 24.04 7.81× 10−6

12 rs12578774 AACS* (1.3 mb) 0.31 14 19.67 9.19× 10−6

2 rs7583622 ASB3 0.23 15 17.07 3.60× 10−5

6 rs6570578 PHACTR2 0.45 16 17.00 3.73× 10−5

1 rs282177 RPS6KA1 0.26 17 17.01 3.72× 10−5

5 rs11949767 MXD3* (59.7 kb) 0.26 18 17.79 2.47× 10−5

10 rs7427 MSRB2 0.36 19 10.64 1.10× 10−3

8 rs1879818 TRAPPC9 0.30 20 7.35 6.72× 10−3

16 rs1974876 CCDC113 0.15 21 10.91 9.55× 10−3

17 rs11651517 GAS7 0.43 22 10.29 1.34× 10−3

20 rs6018946 BLCAP* (581.3 kb) 0.34 23 16.85 4.04× 10−5

2 rs11694785 ARHGAP25 0.40 24 10.15 1.44× 10−3

2 rs6746541 ATOH8 0.35 25 16.06 6.14× 10−5

Table 2.4: The top 25 SNPs from RF analysis of the dataset without chromosome
6 SNPs are shown above in the R2 = 0.90 runs after 3 sub-samplings. Results are
similar to the analysis of full dataset, though there is more heterogeneity in the top
findings, owing primarily to LD pruning. *Indicates that the gene is the closest gene
with distance.
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2.3.3 Reliability of Results Obtained from RF

The final three data configurations (full data, LD99 and LD90) were re-analyzed,
changing only the random number seed. For all three configurations, at least 19 of
the top 25 SNPs were in the final results after sparsity pruning. This suggests that
even after changing the seed, RF results are very stable.

Comparison of Results to Original GWA Study

Finally, the RF results were compared with replicated results from the original
MS GWA study [Hafler et al., 2007]. In all, 4 of 13 MS genes were directly identified
by one of the three data configurations. The strongest evidence came from SNPs in
EVI5 and KANK1 with a suggestion of duplication in IL2RA.

2.4 Discussion

This study is the first application of RF, and one of few machine learning appli-
cations, to the analysis of a GWA dataset. The goals were to outline methodological
considerations for applying RF to large GWA data, and to identify potential novel
MS associations. Given what is currently known about the genetics of MS, it was
not surprising that a strong classifier could be constructed by RF based on data for
multiple SNPs within the MHC. Among the strongest effects (most important SNP
predictors of MS as outcome) was rs9271366, which has been previously shown to
tag DRB1*1501 with r2 = 0.98 [Australia and Consortium, 2009]. Interestingly, once
the 6p effect was removed from analyses, a strong classifier based on non-MHC data
emerged. Results suggest that sparsity pruning provides a means to discover new
associations with RF, although the final error-rate is biased [Svetnik et al., 2004].

RF analyses consistently identified four non-MHC genes as important to distin-
guishing MS cases from controls. These were: MPHOSPH9, CTNNA3, PHACTR2
and IL7. MPHOSPH9 up-regulates neuronal functioning [Ward et al., 2007], and
interestingly, variation within this locus has recently shown suggestive evidence for
association in a much larger meta-analysis that included 2,624 MS cases and 7,220 con-
trols [deJager et al., 2009]. CTNNA3 is a cell adhesion gene that has been associated
with Alzheimer’s disease [Morgan et al., 2008]. PHACTR2 is involved in phosphate
and actin regulation and has been implicated in Parkinson’s disease [Wider et al.,
2009]. Finally, IL7 is an important immune system gene involved in T and B cell
production and has been implicated in other autoimmune diseases, notably rheuma-
toid arthritis, but not MS [van Roon and Lafeber, 2008]. It is important to note that
although SNPs within CTNNA3, MPHOSPH9, PHACTR2 and IL7 were among the
top RF results, associations for these SNPs based on univariate analyses would not
meet criteria for genome-wide significance Pearson and Manolio [2008] (Tables 2.2 -
2.4). As a point of comparison, statistical power based on univariate testing was high
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in our dataset (n=931 cases and 2,431 controls) for detecting an effect size per allele
(or allelic odds ratio) of 1.5 (assuming MAF=0.15-0.50 and α = 1.5∗10−7), However,
power was quite limited to detect smaller effect sizes, for example, 1.3 or 1.2, where
∼ 5− 30% and ∼ 0.5− 3% power, respectively, was present. To date, replicated non-
MHC MS genes have demonstrated very modest effects of 1.2 or even smaller [Hafler
et al., 2007, deJager et al., 2009, Australia and Consortium, 2009]. New results from
the current study will require further replication in a larger, independent dataset, but
underscore the utility of using more than one analytical method to identify genetic
associations.

RF results were also compared to findings from the original MS case-control study
using the same dataset, with duplication defined as a either the original SNP or one
tagged by that SNP among the top RF results. Two previously reported genes, EVI5
and KANK1, were among the top RF findings in the current study. There was also
a suggestion of importance based on RF analyses for IL2RA and perhaps CBLB.

Methodologically, it was shown that RF can be applied to large GWA datasets,
but certain standard assumptions cannot always be made. The OOB-ER was relied
upon to guide decision making about tuning parameters and data configuration. Even
though the focus of the current study was not prediction, this error-rate is valuable for
determining the quality of RF results. First, when working with large, sparse data,
the default value of mtry needs to be increased in order to improve learning. Even for
the sub-sampled data sets, generally an mtry = .1p was the optimal setting. It was
also found that the number of trees necessary to reach stability depended greatly on
the strength of the inputs. For the data configurations with chromosome 6p genotype
data, stability was reached within 250 trees, while for the data configurations without
chromosome 6p data, stability was often not reached until at least 4,000 trees were
generated. LD pruning can be an effective means of reducing data size without
significant loss of information. Also removing sparse variables proved to be highly
effective and resulted in much more efficient learning. It was established that some
very strong effects (chromosome 6p) can mask weaker, yet potentially interesting
effects. Prediction based on genetic data that did not include HLA region SNPs
was surprisingly strong. Finally, one needs to consider the coding of the allelic data.
Coding the data on a dosage scale allows for a flexible examination of genetic effects.
Upon settling on a final configuration(s), doing multiple runs of RF is necessary to
examine the reliability of the VI measures.

More work is needed to achieve a better understanding of the RF algorithm and
how best to apply it to large GWA datasets. The theoretical basis for RF as a predic-
tor is well understood, but less is known about VI. Unlike p-values, there is no strict
criterion for distinguishing between important and non-important variables. Our de-
cision to focus on the top 25 results was based on graphing results, and in that sense
was fairly qualitative. Ideally, one would use permutation to assess the significance of
the VI measures, however this is not feasible with these large datasets. Work is on-
going to determine valid cutoffs for VI measures. Also, only one form of VI was used
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in this analysis (permutation), but another general VI exists for classification based
on the Gini criterion (the optimizing criteria used to construct the tree). Work is
also ongoing to define more targeted measures of VI, particularly for SNP data. Fur-
thermore, as discussed, LD between SNPs and other correlated data are problematic
for RF due to the way VI is calculated and we are currently exploring alternative VI
calculations. Finally, further work is also needed to leverage additional information
from the forest of trees. Little work has been done on clustering observations in RF.
The tree structure can also be used for identifying extensive regions of interactions
and genetic networks and predictors important to specific disease phenotypes.

2.5 Conclusions

This study represents one of the first successful applications of a machine learning
algorithm to GWA data. Machine learning algorithms require fewer assumptions
about the data generating distribution, and therefore, offer a very flexible approach
to data analysis. Our results show the RF algorithm is both computationally feasible
and sensible for analyses of large GWA datasets. Computation time ranged from a
few minutes to a few days depending on the number of variables. Our results support
findings from previous genetic studies in MS, and more importantly, new candidates
emerged that strongly warrant further investigation.

A unique approach to analyzing complex genetic data is described in the current
study. As other machine learning algorithms are expanded to accommodate large
GWA datasets, one can apply an array of algorithms to a large dataset, and then
aggregate results across methods to determine which markers or genes may be of
greatest interest for future studies. Such ensemble learners are common in the machine
learning literature [Hastie et al., 2009], and are becoming more applicable to larger
genetic datasets [van der Laan et al., 2007].
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Chapter 3

A Generalized Approach for
Testing the Association of a Set of
Predictors with an Outcome: A
Gene Based Test

3.1 Introduction

In many statistical problems one desires to relate a set of variables to an outcome.
For example, it is typical in the social sciences to have data on race, income, education
etc. and want to draw inference about the relationship between some outcome and
socio-economic status (SES). SES itself is not observed but is instead a combination of
the aforementioned variables (as well as others). Some approaches for answering such
a question include F-tests and likelihood ratio tests, Fishers’s method for combining
p-values [Fisher, 1948], and principal components regression. In addition to these
generalized approaches, many discipline specific measures have been developed. For
example, in psychology it is common to come up with “scores” on different survey
instruments. While useful all of these methods suffer from two primary limitations.
Firstly, they often rely on parametric modeling assumptions and secondly they often
do not take into account the complex relationships of the variables.

Since the underlying relationship between a set of variables and an outcome is
usually quite complex and unknown, ideally, instead of specifying a model relating
the set of variables to the outcome one would be able to search for the best relation-
ship. Typical statistical learning and prediction methodology is well suited for solving
such problems. Statistical learning algorithms apply a basis function (or set of basis
functions) to the data to find the best relationship to the outcome. While the best
algorithm will depend on the true relationship between the predictor variables and
the outcome, most are well suited for situations where the relationship is complex
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and/or of high dimension. Typically the focus is on trying to get the best estimate
of the function relating the data to the outcome, but in recent years there has been a
growing emphasis on variable importance (VI). However, most of the VI measures are
ad-hoc and do not have sound statistical properties with a clear parameter of interest,
though there is some work trying to formalize VI and attach statistic properties for
more targeted analyses [van der Laan, 2006]. Moreover, like with inferential statistics
there is not a best means to relate a group of variables to an outcome.

The goal of this paper is to establish a statistical test for assessing the relationship
between a set of variables and an outcome. Using tools from statistical learning, a
general function is estimated. Others have assessed this relationship using a full
permutation test (e.g. Radmacher et al. [2002], Birkner et al. [2005], Chaffee et al.
[2010]), however, for all but the simplest algorithms, this is computationally infeasible.
Instead, a simple to calculate statistic is proposed. The parameter to be evaluated
is the risk between a predicted value and the observed value. This observed risk is
compared to an expected risk via a Wald test. A rejection of the null hypothesis that
the observed risk is less than the expected risk indicates that the prediction is better
than would be expected by chance and that the set of predictors are related to the
outcome.

The need for such a statistic can be motivated from two different perspectives:
inferential statistics and statistical learning. From an inferential statistics perspec-
tive, such an approach can be used to test the association of a group of variables and
an outcome (as motivated in the outset). Typically, the group of variables represent
an unobserved construct such as SES, a gene, or a stock index. From a statistical
learning perspective, the current statistical test represents a means to test whether
the prediction derived from a machine learning algorithm is better than what would
be expected by chance. This is a question that is not typically asked within the ma-
chine learning literature as practitioners generally assume that the set of predictors is
related to the outcome and a significant prediction can always be derived. While this
is not an unreasonable assumption, with the growing ubiquity of prediction method-
ology, these algorithms are more often being applied to data that may not actually
have predictive power (this is particularly true within genetic epidemiology). There-
fore, the current method should have broad interest and applicability to both those
who are primarily interested in inference as well as those that are primarily interested
in prediction.

The paper is organized as follows. In section 2 some preliminaries on statistical
learning and loss based estimation via cross-validation are presented. In section 3 the
statistical test is proposed with discussion of how to estimate each of the parameters.
The next section provides a brief overview of related literature. Section 5 shows some
basic simulation results. Section 6 presents an application to genetic epidemiology
data. Section 7 provides some concluding thoughts.
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3.2 Preliminaries

We begin with the observed data Wi = (Yi, Xi) ∼ PW , i = 1, . . . , n. The Yi are
the outcome of interest and Yi ∈ <1. The Yi can be continuous or binary. The Xi

are the covariates, a p−dimensional vector, where Xi ∈ <p. We relate X to Y by the
functional transformation f(·):

E(Y |X) = f(X)

P (Y = 1|X) = f(X) for Y ∈ {0, 1}
(3.1)

In (3.1) we make no assumptions about the function form of f(·).

3.2.1 Statistical Learning

Statistical learning is concerned with estimating f(·) for the purposes of predict-
ing future outcomes based on an observed covariate vector. All statistical learning
algorithms provide a different means of Wrt to Paul’s work it is definitely a more
computationally friendly version b/c it doesn’t require a complete permutation. I
think it can also be viewed as an extension of yours and Sandrine’s workestimating
this function. Table 3.1 lists a range of different learning algorithms. Each algorithm
applies a different type of basis function to the data. All algorithms also have a differ-
ent set of tuning parameters (many have multiple). Changing the tuning parameters
optimizes the algorithm for the specific data problem.

Learner Type of Function Tuning Parameters Speed

Regression Linear Relationship Variables in Model Fast

Lasso/Ridge Regression Penalized Regression Penalty Moderate

Nearest Neighbors Classification based Number Neighbors Fast
on Proximity

CART Tree Tree Depth Moderate

Splines Piecewise Functions Knots Fast

Support Vector Machines Transformation of Transformation Slow
Output Space

Table 3.1: Different Learning Algorithms

Not all algorithms are appropriate for all data problems. For example, if there is
a lot of additive structure in the data a linear algorithm will do much better than a
tree based algorithm. Conversely, if there are many interactions, then a tree based
algorithm would be preferable. Since the choice of best algorithm is dependent on
the true underlying function, f(·), which is unknown, it is impossible to know which
is best to use.
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With this limitation in mind, as computational power has increased, there has
been a growing use of ensemble based learners. Ensemble learning is a process of
combining multiple learners (typically weak ones) together into one meta learner.
There are many different types of ways to ensemble algorithms with the primary
methods being: bagging, boosting, Bayesian model averaging and stacking. Ensemble
algorithms differ in what their base learners consist of and how the algorithms are
combined (i.e. the weights placed on each algorithm). For example the Random
Forests algorithm [Breiman, 2001] is an ensemble based algorithm where the base
learners are unpruned CART trees and they are combined via bagging, a process of
adding equal weight to all learners.

Different ensemble algorithms will have different strengths and weaknesses. In
the present work, the goal is to use the algorithm that best estimates the underly-
ing function f(·). The algorithm that has been found to be most adapted for this
problem is the SuperLearner (SL) algorithm [van der Laan et al., 2007]. SL is an
algorithm based on stacking [Wolpert, 1992]. In stacking based algorithms a library
of algorithms is applied to the data and each algorithm provides a predictions of the
outcome via cross-validation (CV). The predictions for each observation are stacked,
creating a matrix of predicted outcomes for each of the j learners. The true outcome
is regressed onto the predicted values. The derived coefficients provide the weights
for each algorithm.

In the implementation of SL, available in SuperLearner package in R, the regres-
sion performed is a non-negative least squares and the coefficients are scaled to sum
to 1. Other authors [Breiman, 1996, Ting and Witten, 1997] have similarly found
non-negative least squares to be the optimal majorizing function. While typical im-
plementations of stacking involve using similar base learners with different tuning
parameter settings, van der Laan et al. advocate using a full library of different types
of learners covering a range of basis functions. The authors were able to show that
stacking satisfies certain oracle properties which we repeat here:

Oracle Inequalities: Let do(ψ, ψ0) = EPX
{L(X,ψ) − L(X,ψ0)} be the risk dif-

ference between the candidate estimate ψ and the true parameter value ψ0. Also,
suppose the P{(Ψ̂k(Pn) ∈ Ψ) : ∀k} = 1. Assume:

A1: L(X,ψ) is uniformly bounded

A2: The variance of the ψ0-centered loss function (L(X,ψ)− L(X,ψ0)) can be uni-
formly bounded by its expectation uniformly in ψ.

then, for any λ > 0:

Ed0(ΨK̂(Pn)(Pn,T (V )), ψ0) ≤ (1 + 2λ)Ed0(ΨK̃(Pn)(Pn,T (V )), ψ0) + 2C(λ)
1 + log(K(n))

np

where p is the proportion of the observations in the validation sample and C(λ) is a
constant defined in van der Laan et al. [2006].
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These results imply that the SL performs as well as the oracle selector in terms
of expected risk difference and as long as the number of candidate learners (K(n))
is polynomial in sample size, the SL is the optimal learner. Moreover, if one of the
candidate learner searches within a parametric model and that model contains the
truth, then the SL attains an almost parametric rate of convergence log n/n. This
makes the SL an ideal learner when the true underlying function is unknown.

In practice, implementing the SL is fairly straightforward. The main tuning pa-
rameters include selecting the candidate library, the number of CV splits, and the
majorizing function. The majorizing function, as mentioned, is typically non-negative
least squares. While the larger the number of CV splits the better the estimate of the
function, there is obviously a computational trade off. Typically 10-fold or 20 fold
CV has been found to be appropriate. The most important aspect is the candidate
library. Again, while one may say “the more the better” (up to a limit), in practice
fitting each candidate can be highly computational and it is worth being judicious in
the choice of candidate learners. Generally, then, it is best to apply SL with a library
that spans a range of basis functions. One final note about the computation is that
it is fairly straightforward to implement the SL either within a cloud environment or
across nodes in a parallel environment.

3.2.2 Loss Based Estimation via Cross-Validation

Once the learning algorithm is fit to the data a prediction, f̂(Xi), is generated for
each observation, Yi. The goal in prediction is to minimize the risk over the training
set:

argminfE[L(Y, f̂(X)] (3.2)

The “harder” f̂(·) is fit to the data, the greater the potential for over-fitting,
referred to as the optimism, and, consequentially under-estimating the risk [Hastie
et al., 2009]. There are two main approaches for correcting for over-fitting. The first
is by directly estimating the optimism and adding this to the estimated training error
(e.g. AIC, BIC, MDL). The other is to directly estimate the test error (e.g. CV,
Bootstrap methods). Direct methods are useful when the number of basis functions
(effective number of parameters) are easily calculable (e.g. linear models, regularized
regression). For more complex methods (including all ensembles), such calculations
are intractable. CV methods provide the simplest approach to obtaining an honest
estimate of f̂(X), and consequently the risk.

In all CV methods, the data are divided into a training and validation set. The
estimator is computed (trained) on the training set and then tested (validated) on
the remaining validation set. This process is iterated, allowing each observation to be
part of the validation set, providing an unbiased estimate of the risk of the estimator
[Dudoit and van der Laan, 2005].
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Using notation from Dudoit and van der Laan, we define a binary random vector,
Bn = (Bn(i) : i = 1, . . . , n) ∈ {0, 1}n, independent of the empirical distribution Pn. A
realization, Bn(i) represents an indicator of whether an observation is in the training
or validation set:

Bn(i) =

{
0, ith observation Xi is in the training set,

1, ith observation Xi is in the validation set,
(3.3)

Let P 0
n,Bn

and P 1
n,Bn

denote the empirical distributions of the training and validation
sets, respectively, and let the number and proportion of observations in the validation
sets be denoted by n1 ≡

∑
iBn(i) and p = pn ≡ n1/n, respectively. Then a definition

of the cross-validated risk estimator for ψn = Ψ̂(Pn) is

θ̂pn,n ≡ EBnΘ(Ψ̂(P 0
n,Bn

), P 1
n,Bn

)

= EBn

∫
L(x, Ψ̂(P 0

n,Bn
))dP 1

n,Bn
(x)

= EBn

1

n1

n1∑
i:Bn(i)=1

L(Xi, Ψ̂(P 0
n,Bn

))

(3.4)

where Ψ̂(P 0
n,Bn

) represents the estimator of the parameter ψ based on the training
set.

The distribution of Bn determines the type of CV. The most common type of CV
is V-fold cross-validation. In V-fold CV the learning set is randomly divided into V
mutually exclusive sets of approximately equal size. Each set is then used in turn as
a validation set (see figure 3.1). The distribution of Bn places mass 1/V on each of
V binary vectors such that

∑
i b
v
n(i) ≈ n/V ∀ v and

∑
v b

v
n(i) = 1 ∀ i. Other forms of

cross-validation include Leave-one-out cross-validation, Monte Carlo cross-validation
and Bootstrap-based cross-validation [Dudoit and van der Laan, 2005].

Dudoit and van der Laan showed that the risk estimate provided through CV is
asymptotically linear with appropriate assumption (see Theorem 3 in their paper)
and has influence curve (IC):

IC ≡ L[Y, f(X)]− θ ⇒

θ̂ ∼=
1

n

n∑
i=1

L[Yi, f̂(Xi)]− θ̂
(3.5)

The benefit of defining the IC of a parameter is that one can use the variance of the
IC to obtain the variance of the estimator. Dudoit and van der Laan use this result
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Figure 3.1: Illustration of 4-fold CV where n = 8 and n1 = 2. In each cycle, 6
observations are used to train the learner and 2 are used to test or validate it. Courtesy
of maxdama.com

to construct confidence intervals for the risk estimate

θ̂n ± z1−α/2
σn√
n

where θ̂n is the estimated cross-validated risk and σn is the standard deviation of
the cross-validated loss. Asymptotically the observed standard deviation, σ̂, is an
appropriate estimator. Bengio and Grandvalet [2004] showed that while there is no
unbiased estimate for σ in finite samples, it does converge to the observed standard
deviation fairly rapidly (see Section 3.4 for discussion).
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3.3 The proposed test statistic

The parameter of interest, θ, is the risk from our prediction algorithm:

θ ≡ EL(Y, f(X))

θ̂ ≡ EL(Y, f̂(X))
(3.6)

based on the model defined in (3.1). While Dudoit and van der Laan [2005] focused
on generating confidence intervals for the observed risk, θ̂, the present interest is in
hypothesis testing. We can test the hypothesis:

Ho :θ ≥ θ∗

Ha :θ < θ∗
(3.7)

This is a one-sided hypothesis test of whether the observed risk, θ̂n is less than some
expected risk under a null hypothesis, θ∗n. We define

θ∗ ≡ E[L(Y, f(X))]s.t.Y ⊥ X (3.8)

We can then use the same asymptotic linearity result and define a Wald-type statistic,
with parameter ψ:

Z =
ψ̂
√
n√

ˆvar(IC(W ;ψ)

=
θ̂n − θ̂∗n√
var(θ̂n − θ̂∗n)

∼ N(0, 1)

(3.9)

This will be a one-tailed test as we are only interested in the case where θ̂n < θ̂∗n.
From (3.9) there are three values that need to be estimated:

• The estimated risk: θ̂n

• The estimated risk under the null: θ̂∗n

• The variance of the difference of the two: var(θ̂n − θ̂∗n)

3.3.1 The Observed Risk

The observed risk is the simplest value to estimate. Whereas any loss function
can be used, a loss that has certain asymptotic properties will be needed to allow for
the use of the IC to calculate the asymptotic variance. Based on the work of Dudoit
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and van der Laan [2005], this includes most any loss, with the notable exception of
misclassification loss.

For mathematical simplicity, that will be seen later, squared error (`2) loss is used,
with the estimated risk being:

θ̂n ≡ EnL(Y, f̂(X)) ≡ En(Y − f̂(X))2 (3.10)

3.3.2 The Null Risk

The null risk is the expected value of the loss between the observed outcome and
the predicted outcome, when the set of covariates, X, is independent of the outcome,
Y . The most direct way to estimate this is by permuting the X values and retraining
the predictor. For all but the simplest prediction algorithms, though, this can be
computationally infeasible. However it is possible to estimate this value. We need:

θ(P ∗) = EP ∗ [Y − f(X)]2

Assuming that f(X) is of fixed form, and the learning algorithm has an intercept:

Ef(X) = µY = EY

Therefore, we get:

EP ∗ [(Y − µY + µY − f(X))2]

= EP ∗(Y − µY )2 + EP ∗(f(x)− µY )2 + 2EP ∗
(
(Y − µY )(µY − f(X)

)
So:

θ = var(Y ) + var
(
f(X)

)
− 2cov

(
f(X), Y

)
θ∗ = var(Y ) + var

(
f(X)

) (3.11)

Thus a test of the null that θ = θ∗ is a test of the cov
(
f(X), Y

)
= 0.

3.3.3 The Variance of the Difference of Risks

The final consideration is defining the variance of the difference of θ̂n & θ̂∗n. Using
the property of ICs we have:

var(θ̂ − θ̂∗) =
var(IC[θ̂]− IC[θ̂∗])

n
(3.12)

Therefore we need to define the IC for θ̂ and θ̂∗. We note the parameter of interest
can be expressed as:
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ψ ≡ E[Y − f(X)]2 − E[Y − EY ]2 − E[f(X)− E(f(X))]2 (3.13)

This is simply the difference of three loss functions. Dudoit and van der Laan [2005],
provided the framework for calculating the influence curve for any general loss func-
tion, noted in (3.5). Therefore:

IC(W ;ψ) = IC1 − IC2 − IC3

=
(
L[Y, f(X)]− θ

)
−
(
L[Y,EY ]− θY

)
−
(
L[f(X), Ef(X)]− θf(X)

)
(3.14)

By substituting the appropriate loss function (in this case `2) and taking the variance
of (3.14) one can calculate the inference for the test statistic. There are now all of
the elements of the test statistic and referring back to (3.9) we can write:

Z =
ψ̂
√
n√

ˆvar(IC(W ;ψ)

=
θ̂n − θ̂∗n√
var(θ̂n − θ̂∗n)

=
√
n
[
En(Y−f̂(X))2−En(Y−Ȳ )2−var(f̂(X))

]
√
var

(
En[(Yi−f̂(Xi))2+θ̂]−En[(Yi−µ)2+σ̂2

Y ]−En[(f̂(Xi)−Ef̂(Xi))2+σ̂2
f̂(X)

]

)
(3.15)

The statistical test as constructed will be unbiased for predicting on an indepen-
dent sample. However, while asymptotically the proposed test statistic will approach
N(0, 1) in practice the estimated variance a bit too small. This is due to the excess
correlation induced by cross-validation (see [Bengio and Grandvalet, 2004]). Simula-
tions showed that the asymptotics do not fully kick in until extremely large samples
(n > 1× 107). Grandvalet and Bengio [2006] proposed a finite sample correction (see
section 3.4). Based on experimental results it was found that the variance in (3.15)
underestimated the true variance by a factor of 2 (see figure 3.2 in section 3.5). This
is obviously a less than ideal solution and current work involves trying to determine
a more theoretical finite sample correction.

To calculate the statistic in R code:

sqLOSS <- function(x,y)(x-y)^2

predTestL2 <- function(pred,Y,LOSS = sqLOSS){

n <-length(Y)

ll <- LOSS(pred,Y) ###\hat\theta
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lo <- LOSS(mean(Y),Y) - LOSS(pred,mean(pred)) ###\hat\theta^*

LossD <- mean(ll - lo)

varIC <- var(ll - lo)*2

Z <- LossD*sqrt(n)/sqrt(varIC)

return(Z)

}

3.3.4 A Permutation Based Test

It is also possible to construct a significance test via the permutation distribution.
To test the independence of Y and the p-vector X one could permute the Y and
continually retrain the predictor [Radmacher et al., 2002]. However, for the most
part this is too computational. Alternatively, one can test the independence of Y and
f̂(X). To do so:

1. Train the predictor to obtain f̂(X)

2. Calculate θ̂ =
∑

i L(Yi, f̂(Xi))

3. Permute the Yi b times and calculate θ̂∗j =
∑

i L(Y ∗i , f̂(Xi)) for j ∈ 1 . . . b

4. The permutation based p-value is 1
b

∑
j I
[
θ̂ < θ̂∗j

]
The choice of b will depend on the desired precision of the empirical p-value, with

stronger associations requiring larger b. To calculate this in R code:

predTestPerm <- function(pred,Y, p = 1000, LOSS = sqLOSS){

Yp <- replicate(p, sample(Y))

mZ <- median(LOSS(pred,Y))

Zp <- apply(Yp,2,function(x)median(LOSS(pred,x)))

pval <- 1 - sum(mZ < Zp)/p

return(pval)

}

3.4 Previous Work with Assessing Prediction

In a general sense, the proposed test can be considered as analogous to an F-test,
used in linear regression. Both approaches aim to test the goodness-of-fit of a fitted
function based on the residual fit. The primary distinction is that while an F-test
relies on the correctly specifying the parametric form of f(·), the proposed test can be
seen as a semi-parametric alternative that does not depend on a specified functional
form (see Figure 3.5 in Section 3.5).



39

There has been some related work assessing the significance of a prediction. The
work of Dudoit and van der Laan [2005] focused on providing a theoretical basis for
calculating the standard-error of the CV risk estimate for the purpose of constructing
confidence intervals. Their work focused on the asymptotic properties, showing that
it is both consistent and asymptotically linear.

Bengio and Grandvalet [2004] were also interested in constructing confidence in-
tervals for the CV risk estimate, however they focused on finite samples. The authors
showed both theoretically and via simulation that in finite samples it is not possible
to get an unbiased estimate of the variance of the cross-validated risk estimate. They
broke down the variance into three components:

(1) The variability of the prediction within each validation block

(2) The covariance between predictions within each block

(3) The covariance between predictions in different blocks

The first value is the quantity of interest, however, simply taking the empirical vari-
ance of f̂(X) is biased by the other two quantities. However, the authors showed, with
modest sample sizes (n > 100−500) these two values go to 0, resulting in the desired
value. The authors proposed a corrected test statistic based on an assumed maximum
between block correlation of 0.7 [Grandvalet and Bengio, 2006]. This correction is
similar to the proposed correction in the current work. The primary limitation of
their formulation is that they construct a t-test against a fixed value. However, as
shown above, if one wants to test against an expected risk, it is necessary to estimate
θ∗ and therefore the variance of the estimate also needs to be considered.

Dietterich [1998] showed also that it is only in small samples one needs to be
concerned with the variance estimates of the cross-validated risk. This work provides
further finite sample justification for the work of Dudoit and van der Laan and much
of the present discussion.

Other work includes Radmacher et al. [2002] who laid a general framework for
assessing the prediction in micro-array studies. The authors advocated permuting and
then refitting the learner, to assess the risk estimate via cross-validation. However,
they were working with much simpler learners. Others have used this full permutation
approach for testing genetic pathways [Birkner et al., 2005] and perfoming gene set
tests [Chaffee et al., 2010]. Lusa et al. [2007] noted that simply calculating the odds-
ratio on a two-by-two table led to inflated type I error. This was also noted by Lee
[2007]. This observation conforms to the theory presented in Dudoit and van der
Laan, which showed that misclassification loss is not an appropriate loss function to
use for the present work.



40

3.5 Simulations

To examine the behavior of the test statistic a series of simulations were under-
taken. It is re-noted that the Z-test is a one-tailed test where the more negative the
test statistic, the more significant the association. The first simulation was aimed at
examining the need for a correction of the test statistic. Figure 3.2 shows the true
variance of θ̂ − θ̂∗ compared to both the asymptotically calculated variance as well
as the corrected variance. One-thousand simulations were performed using full terms
regression as the only learner, and 10-fold CV (larger folds of CV were performed and
did not impact the results). Both the sample size and the number of parameters in the
model were varied. Results suggest, that the ratio between the true variance and the
asymptotic variance is fairly consistent at 2. The absolute variance decreases as sam-
ple size increases and increases with the number of parameters. The great decrease
in the absolute difference of the expected and estimated variance with large sample,
suggests that the asymptotics are working, but the relative difference, indicates that
the correction is of value.

Once determining an appropriate correction for the test statistic, the next series
of simulations aimed to understand the statistic itself. The first simulation explored
the null situation where Y ∼ N(0, 1) was independent of X ∼ N(0, 1) ∈ <p. One-
thousand simulations were run, using 10 predictors, under three different sample sizes
(100, 2, 000, 10, 000). Linear regression was the only model used to estimate f(X).
As the sample size increases the test statistic becomes more normally distributed.
Moreover the correction becomes less important. For the permutation test, a Z-
quantile for the empirical p-value was calculated (see Figure 3.3).
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Figure 3.2: The true variance and estimated variance of θ̂n − θ̂∗n across 1,000 sim-
ulations. In the left hand figure, the number of parameters is fixed at 10 and the
number of people is varied from 100 to 10,000. In the right hand figure the number
of people is fixed at 10,000 and the number of parameters is varied. Unsurprisingly
the variance decreases with sample size and increases with the number of parameters.
Of greater interest, the ratio between the asymptotically estimated variance and the
true variance remains relatively constant at 2, though decreases in absolute terms
with increasing sample size. Finally, the increase in variance due to the number of
parameters appears to be linear in p.
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Figure 3.3: Behavior of test statistic with increasing sample size. One-thousand
simulations performed with continuous X and Y and no association between them. 10
predictors are used. For larger n both the asymptotic and the corrected test statistics
become more normal with variance 1. The uncorrected is slightly anti-conservative in
the extreme (negative) tails highlighting the need for the correction at lower sample
sizes. The permutation p-value have been transformed to a normal distribution for
comparison and maintains appropriate error control.
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Secondly, the test statistic was examined under an alternative scenario where there
is a true relationship between Y & X. In this simulation, p = 10, and different sample
sizes were used. Y = X1 + ε, with Y ⊥ X2 . . . X10. For simplicity, the corrected test
statistic was calculated. Figure 3.4 shows the simulation results. While, the test has
little power in low sample size (n = 100), the test gains power as the sample size
increases, and maintains a N(µ, 1) distribution.

To illustrate the comparison to the F-test, two more simulations were undertaken,
both under an alternative model. In the first, Y = X1 + ε again. In the second,
Y = X1 ∗ X2 + ε, an interaction between two of the X covariates but with no main
effects. To calculate the F-statistic the full main effects model was fit. In scenario
I, it is expected that the F-statistic should capture the Y,X1 relationship. However,
in simulation II, the model is now misspecified. To calculate the proposed test, a
SuperLearner was fit, using a step wise algorithm and an intercept function.

The average p-values for each scenario are calculated and presented in figure 3.5.
Both methods are able to detect the association when there is a main effect term in
the model. However, once there is only an interaction, the F-test loses all of its power
due to the misspecified model. The SuperLearner approach is able to flexibly search
for the best model and consequently has ample power to detect the association. It is
thus flexible against semi-parametric alternatives, giving this approach its power.
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Figure 3.4: Distribution of the test-statistics when there is an association. Again
linear regression is the only model used to estimate f(X). The corrected test-statistic
is calculated. As the sample size increases, the test statistic becomes both more
significant (more negative) and approaches N(µ, 1).
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Figure 3.5: Average − log10 of the p-values for the two “alternative” simulation set-
tings. In the first, there is a a true main effect term in the model and both the F-test
and the proposed test are able to detect it. In the second, there is only an interaction,
and the miss-specified regression model is not able to detect the association, while the
more flexible SuperLearner based method is able to find the right model and detect
the association.
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3.6 Application to genetic data

A typical means of studying the genetic causes to diseases is via SNP association
studies. This design involves recruiting 1000’s of people with and without a disease
of interest, referred to as cases and controls respectively. Each individual is typed
on a set of single nucleotide polymorphisms (SNPs). Each SNP represents a single
base pair of DNA where there is a degree of variation across the population (most
DNA is fixed and does not vary). Genes are made up of 100s or 1000s of base pairs of
DNA. Amongst these bases there will be dozens or 100s of SNPs. In Genome Wide
Association (GWA) studies individuals may be typed on up to 1 million SNPs across
the genome, aiming to capture ones common genetic variation (on the nucleotide
level). In more focused candidate gene studies individuals may be typed on 10’s of
thousands of SNPs aimed at well characterizing specific genes. These studies represent
an a hypothesis-free search across the genome for regions of interest to be followed
up on.

For the most part GWAs have been successful at identifying SNPs, and be exten-
sion genes, associated with many common diseases [WTCCC, 2007]. However, it is
not presumed that any associated SNP is itself causal. An associated SNP may be
correlated (referred to as in linkage disequilibrium [LD]) with the true causal variant,
located within or near the same gene. Therefore all results need to be confirmed
via replication. Moreover, since the studies are initially exploratory (until replication
has occurred) the true unit of interest the gene in which the SNP lies. This has led
towards the recognition of the need for gene based tests [Neale and Sham, 2004].

In recent years there has been growth of gene based tests of association (see Beyene
et al. [2009] for a recent review). These methods can roughly be broken down into
(i) clustering and PCA based approaches and (ii) logistic modeling and combining
marginal p-values. The method used in the popular and freely available software
PLINK [Purcell et al., 2007], is a variation of Fisher’s Method [Fisher, 1948] that uses
the permutation distribution to assess significance. However, most of these methods
suffer from one primary limitation: they rely on marginal p-value (as calculated by
a χ2 test) to assess the gene based association. While marginal testing has been
somewhat successful in detecting associations, and is (more importantly) computa-
tionally simple, it does not well capture complex associations. SNPs may interact
or be involved in complex joint associations with other SNPs [Heidema et al., 2006].
Therefore, methods dependent on typical marginal tests may be ill suited for creating
gene based tests.

One can consider the proposed to test as another means of performing a gene
based test for association. In this setting, the observed units would be the SNPs and
the unit of interest is the gene which they comprise. A prediction model relating the
SNPs in a gene to disease status serves as a test for association for the entire gene.
This point is illustrated first via simulation and then in application to a candidate
gene study.
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3.6.1 Simulation Study

A more comprehensive simulation study was undertaken to explore the use of the
test statistic for candidate gene studies. Fifty simulations were performed. In each
simulation 440 genes were simulated, consisting of 10 SNPs. Each of the 10 SNPs were
independent and had a minor allele frequency of 0.3. In this sense a realistic genetic
structure was not simulated, where one would expect complex correlation between
SNPs and varying minor allele frequencies. However, to explore the performance of
the method this was not necessary.

Of the 440 genes in each dataset, 40 (10%) of the genes were associated with the
outcome. The goal of the simulation was specifically explore how the proposed test
compares to standard methods when there is a complex association. Four different
association models were used:

Additive: P (D|SNPsGene) = β(X1 +X2 +X3) with Xi ∈ {0, 1, 2}

Dominant: P (D|SNPsGene) = β(X1 +X2 +X3) with Xi ∈ {0, 1/2}

Recessive: P (D|SNPsGene) = β(X1 +X2 +X3) with Xi ∈ {0/1, 2}

Interaction: P (D|SNPsGene) = β(X1 ∗X2) with Xi ∈ {0, 1, 2}

These represent genic style associations where multiple SNPs within a gene lead to
an increase in the probability of disease.

For each dataset three measures of association were calculated. First, the marginal
association for each of the 4, 400 SNPs was calculated via the allelic χ2-test. This is
the typical test for association in genetic epidemiology studies. It is a 1-df test that
compares the frequency of the alleles between those with disease and those without.
The second measure of association was the variation of Fisher’s Method for combining
p-values. To calculate the p-value, 10,000 permutation were performed. Finally, the
current test was used to estimate the function

P (D|SNPsGene) = f(SNPs)

A SuperLearner was fit using a library of: k-Nearest Neighbors, a logistic regression
step function, RandomForests, LASSO and an intercept function, using 10 fold CV to
both fit and validate the function. The corrected parametric statistic was used to
calculate the p-value.

For each method the false discovery rate (FDR) was controlled using the Benjamini-
Hochberg (BH) [Benjamini and Hochberg, 1995] procedure at a level of 5%. The
average power and error-rate across the 50 simulations was calculated for each proce-
dure. For the marginal testing, if one of the SNPs in the gene passed the significance
threshold, then the entire gene was declared significant.
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Figure 3.6: Bar plot comparing three methods for assessing the association of a gene.
The proposed test has both the greatest power (∼ 57%) lowest FDR (∼ 1.8%) The
FDR was controlled at a level of 5%. Marginal testing proved to be fairly successful,
though the greater multiple testing burden incurred by the 10-fold increase in the
number of tests makes it less powerful. Fisher’s Method was not able to maintain a
high significance level.

Figure 3.6 shows the power and FDR for the three methods. The proposed test has
the most amount of power (57% vs. 50% & 1%) as well as the lowest error-rate. While
marginal testing was fairly successful, the extra multiple testing burden incurred by
the extra tests decreased its power. It should be noted, that in an actual association
study, this burden would be even greater as most genes have many more than just 10
SNPs. Finally, Fisher’s Method was least successful, this owes to the duel fact that it
only looks at marginal associations and considers all tests simultaneously, while the
proposed method, looks at the joint effects of only those tests of importance.

These results should not necessarily be interpreted that the proposed test is uni-
formly more powerful than these or other methods. The proposed statistic is an
omnibus test, and only a few types of causal models were explored. For example, if
only one SNP for a given gene were causal, then the marginal test would be most
powerful. Likewise, if most of the SNPs for a given gene were associated than Fisher’s
Method would have more power. The value of the present statistic, though, is that it
does not require one to specify a specific model, but search for the best fitting one,
while still maintaining adequate power.

To illustrate this a second simulation was undertaken. As opposed to a complex
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association, only one SNP was associated per gene. Moreover, the marginal p-value
was simulated to be approximately 1 × 10−8, the standard cut-off for genome wide
significance. One thousand genes were simulated, and the median the p-value for
the associated SNP was 8.5× 10−9. The median p-value on the gene-based test, was
1.6 × 10−4. This shows that even when the causal mechanism favors the marginal
test, there is still ample signal to find an association via this more flexible approach.
For more complex associations, as well as for larger datasets with greater multiple
testing burden, this difference will decrease.

3.6.2 Data Analysis

To examine how this methods works with real data, three analyses were performed
using a data set derived from a candidate gene study. The first was a typical analysis
to determine which genes were associated with disease. The second was aimed at
exploring the association of a genetic pathway. The third is a more unique cluster
based analysis.

Data for all analyses comes from a 2007 candidate gene study from the Interna-
tional Multiple Sclerosis Genetics Consortium. Multiple Sclerosis (MS) is an auto-
immune disease known to have a strong heritable component based on epidemiolog-
ical studies [Oksenberg and Barcellos, 2005]. The major histocompatibility complex
(MHC) region of chromosome 6 has long been known to be associated with MS,
however few other genes have been definitively identified.

The goal of the 2007 was to follow-up on suspected MS genes. The data collection
has been described previously [IMSGC, 2010]. In brief, the data consisted of 1, 379
controls and 1, 343 cases. Data were collected on 52, 801 SNPs across 9552 genes.
After data cleaning there were 46, 057 SNPs.

Candidate Gene Study

The first analysis was aimed at detecting which genes are associated with MS. All
genes that had at least 8 SNPs in them and were not on chromosome X or within the
MHC were selected. Chromosome X genes were dropped to avoid gender effects, while
MHC genes were dropped since the goal was to detect genes that were not known to
be associated with MS. This left 1, 254 genes comprising 25, 362 SNPs.

The three methods for association were calculated as in the simulation study: the
generalized method, the mean of the p-values (Fisher’s Method) and simple marginal
testing. For the generalized method, a SuperLearner was fit to estimate the function
using the same candidate learners as above, including also, Support Vector Machines
and PolyClass. For the mean of p-values, 10, 000 permutations were used, performed
in PLINK [Purcell et al., 2007]. For marginal testing, the minimum p-value for each
gene was recorded.
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Figure 3.7: Distribution of test statistic for all genes. Left is a density plot while the
right is a qq-plot. The plots suggest that there are no greater associations that would
be expected by chance.

After controlling for multiple testing using the BH-FDR, none of the measures
of association provided an FDR below 10%, suggesting that the smallest observed
p-values would be expected simply by chance. Figure 3.7 shows the distribution of
the test statistic across the 1254 genes, both as a density plot and qq-plot. This
further reflects that even though small p-values were observed, these conform with
what would be expected.

While it is not possible to reject the global null of no genes being associated, it
is still of value to explore the most significant genes. Table 3.2 lists all the genes
that had a p-value less than .01 on the proposed test. Also listed are their p-values
for Fisher’s Method as well as the smallest marginal p-value. From the table, it is
clear that some genes had strong association regardless of the method used. These
include STAT4, IL7 and CLEC16A. Unsurprisingly, IL7 and CLEC16A have previously
been identified as MS genes [Hafler et al., 2007]. In this sense, the proposed method
is able to replicate previous findings. However, the other genes, while showing some
marginal association, would not be detected by typical methods. This suggests, that
if truly associated, the mechanism is more likely more complex than a single SNP
association. Also noteworthy, is that the size of the gene appears to be independent
of the strength of association. Both small and large genes had strong associations.
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Gene Chr Num SNPs Gene P-val Mean P-val Min SNP P-val
STAT4 2 139 0.099 0.006 2.86× 10−5

EFNA5 5 10 0.099 0.386 0.056
MAP1B 5 13 0.005 0.379 0.055
IL7 8 73 0.009 4.0× 10−4 2.04× 10−5

RBM17 10 77 0.009 0.310 0.021
IRF7 11 8 0.006 0.044 3.49× 10−4

CLEC16A 16 14 0.005 1.0× 10−4 1.08× 10−5

MYO1D 17 9 0.004 0.165 0.075
APP 21 9 0.005 0.104 0.044

Table 3.2: All Genes that had a p-value less than .01 on the gene based test. The
p-value based on Fisher’s Method as well as the minimum marginal p-value is also
shown. The genes highlighted in red probably would not have been detected by
alternative methods. Other genes, such as IL7 & CLEC16A not surprisingly have
previously been associated with MS.

Pathway Analysis

Using the same dataset, a second analysis was undertaken. Instead of looking
at individual genes, whole genetic pathways were explored. Many genes have shared
biological functions, referred to as genetic pathways. One such pathway of interest
for MS is the DNA Repair pathway. The DNA repair pathway consists of four sub-
pathways. Briggs et al. [2010] studied the pathways’ relationship with MS, using a
mixture of machine learning (Random Forests) and parametric modeling (Logistic
Regression). The results suggested that the only important gene in the pathway is
GTF2H4, which is located within MHC region of chromosome 6. However, the results
were not definitive, and using the same data, the same pathways were reanalyzed
using the current method.

In pathway analysis the observed unit is still individual SNPs, but the unit of
interest is now a collection of genes. Methodologically, the approach is the same as
analyzing a gene, except the number of SNPs are increased. A SuperLearner was fit
using the same candidates as above. The four pathways were analyzed separately and
the results are shown in Table 3.3. The only associated pathway is the NER pathway,
which contains GTF2H4. Analyzing GTF2H4 independently, revealed an association
very close to the full NER association. Finally, analyzing the NER pathway without
GTF2H4 revealed no association. These results are a more definitive confirmation of
the findings in Briggs et al. [2010] that GTF2H4 is the only important component of
the DNA Repair pathways as it relates to MS.
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Pathway Num Genes (SNPs) Z-Statistic P-value
BER 22 (127) 0.12 0.55
HR 15 (124) -0.29 0.38
NHEJ 9 (90) -0.97 0.17
NER 26 (208) -3.12 9.03× 10−4

NER (w/out GTF2H4) 197 -0.68 0.25
GTF2H4 only 11 -3.79 7.53× 10−5

Table 3.3: Results for the DNA Repair pathway analysis. Only the NER pathway
shows any association with MS. However, upon further examination that association
is based entirely on GTF2H4 confirming the results in Briggs et al. [2010].

Clustering the MHC

To illustrate the flexibility of this method to genetic data a very different analysis
was performed. Instead of testing the association of a region, the predictions were used
to cluster genes. As mentioned, the MHC region of chromosome 6 is well known to be
highly associated with MS (as well as many other auto-immune diseases). While the
gene based analysis revealed that almost every MHC gene had an association (often
very strong ones), one question of interest is whether these associations are due to the
strong and complex correlation (LD) in the MHC or are independent signals. While
HLA-DRA is known to be associated with MS, recent studies have suggested that
other genes may also be independently associated (e.g. Cree et al. [2010]).

In order to explore this question a novel approach was taken. The predictions
(f̂(X)) were calculated for each of the 78 MHC genes in the dataset. Then using the
predictions of just those with disease (n = 1343) all of the genes were clustered using
the partitioning around medoids (PAM) algorithm. PAM is similar to k-means clus-
tering, with the primary difference being, instead of minimizing an average distance,
a median distance is minimized, making the findings more robust. The MHC can
be divided into three classes. Therefore the number of centers, k, was chosen to be
3. Since the goal was to capture the correlation among the predictions, a correlation
based distance was used.
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Figure 3.8 shows the clusters of the 78 MHC genes. The genes, are ordered by
their position on Chromosome 6. The groupings of genes clearly correspond to their
position, suggesting that the correlation between the f̂(X) is maintained through the
position. Of greater interest, the cluster memberships correspond fairly well with the
three MHC classes.

To explore the question of whether these clusters represented independent signals,
a SuperLearner was trained using the SNPs in each of the three clusters, using the
same procedures of above. The interest was not in whether each cluster is associated
with MS (each clearly is), but whether the associations represent distinct signals.
Table 3.4 shows the correlation matrix for the three clusters. While there is positive
correlation between all three classes, Class I and Class II genes appear to be fairly
independent of one another compared to Class III (which is physically located in
between Class I & II). This suggests that there may be two separate associations
within the MHC for MS. While this analysis does not represent a confirmation of
independent signals, like previous analyses, it does correspond to previous analyses
that they may exist.

Class I Class II Class III
Class I 1.000 0.175 0.410

Class II 0.175 1.000 0.516
Class III 0.410 0.516 1.000

Table 3.4: Correlation matrix of the f̂(X) from the three MHC clusters, corresponding
to the three MHC classes. Class I & II appear to be somewhat independent, suggesting
that there may be two independent signals within the MHC for MS.

3.6.3 Thoughts on Application to Genetic Data

Three different applications to genetic data were illustrated, highlighting the flex-
ibility of this approach. One particular challenge to this method is the ability to
create a strong predictor using genetic data. The influence of ones genetics on disease
(i.e. P (Disease|Genetics)) is going to be relatively low. For example, while MS has a
strong genetic component, its overall heritability is only estimated at 25% [Oksenberg
and Barcellos, 2005]. Therefore, if a gene is in fact causative of disease, one would
not expect the P (D|G) to differ much from average risk. Therefore the true risk
(θ) will not be much less than the expected risk (θ∗) making detecting a significant
association challenging.

Clayton [2009] looked at SNP data and noted that even highly associated SNPs
have low predictive ability. However, Kooperberg et al. [2010] recently showed, that
creating prediction models using SNPs that do not have strong marginal associations,
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does improve the models. This is essentially the approach undertaken here, using
all SNPs within a region regardless of their marginal association. Even so, it is
possible that the weak associations detected in the candidate gene analysis, may not
be indicative of a lack of effect, but simply a weak predictive ability of the SNPs in
those genes.

3.7 Conclusion

The proposed method represents a powerful, flexible and semi-parametric ap-
proach to testing the relationship between a set of variables and an outcome. It
has applicability both within the fields of prediction and machine learning as well as
classical statistical inference. From a machine learning perspective, it represents a
means of assessing whether the predictive ability of a set of predictors is better than
what would be expected by chance. This represents an important but often unasked
question of whether one should even attempt to construct a predictor from the given
data. From an inferential perspective, it represents a means to assess whether a set
of variables is related to an outcome. Traditional methodology is aimed at assessing
the relationship between one covariate and one outcome. This allows one to look at
multiple variables at once. This is particularly important in fields like genetics and
the social sciences where one often has data on one level (e.g. SNPs, social variables)
and wants to make inference on another level that aggregates the data (i.e. genes,
SES). Such aggregation is often the only approach, as many times the level one wants
to make inference on, represents a construct and not an actual observable variable.

The constructed test statistic is a Wald statistic, using influence curves to calculate
the inference. A finite sample correction was necessary to appropriately scale the
variance. While the current correction is somewhat adhoc it conforms with other
current work in the area. An important area of further investigation is a formalized
correction. For perspective, the test-statistic has been compared to the F-test used
in linear regression. In this sense it can be thought of generalized goodness-of-fit
test. Simulation results show the relationship to the F-test, but also how it is more
powerful under a variety of alternatives.

A range of applications to genetic data were illustrated. The first involved testing
the association of gene (and pathway) with disease. A more comprehensive simulation
illustrated how this is more powerful than typical approaches under complex associ-
ations. While the candidate gene analysis was not able to reveal associations greater
than what would be expected by chance, examination of results did reveal that genes
that would not be identified by traditional approaches had strong associations. An
analysis of genetic pathways was able to more strongly confirm results in a previous
study that were merely speculated upon. A final analyses illustrated the variety of
questions that could be addressed with this data. Using the same dataset, the goal
was to find clusters of genes in the MHC. The clusters corresponded almost perfectly
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with biological understanding and the results provided insight that there may be two
independent sources of association within the MHC for MS.

In all, this method represents an important contribution to a range of statistical
applications, filling a need within both statistical learning and inferential statistics.
It effectively expands the range of questions that one can ask of their data and should
represent an important tool for many analyses.
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Chapter 4

A Direct Approach to Analyzing
Gene Expression Data

4.1 Introduction

In many gene expression experiments a large number of genes will prove to be
differentially expressed even after controlling for multiple testing. Secondary analyses
such as Gene Ontology (GO) and Motif Analysis (MA) have the potential to provide
biological insight and direct future studies, however the methods need to be used
thoughtfully. Simply, running all the significant genes through an analysis program
without proper filtering may lead to muddled results. Therefore a central statistical
challenge is how to group genes to be passed on to a secondary analysis.

Eisen et al. [1998] was one of the first papers to address this issue, showing that
clustering data could lead to more homogeneous groupings of the data and more
meaningful results. In recent years highly sophisticated clustering methods have
been developed for gene expression studies (e.g. see van der Laan and Pollard [2003]).
Clustering is a very effective tool for grouping data and has become standard practice
in gene expression studies. After clusters are identified, they are passed on to the
appropriate secondary analysis for further investigation [Werner, 2001].

While this approach has led to many valuable discoveries it ultimately does not
make full use of the data. In many gene expression experiments a phenotype pattern
is observed that one desires to explain. In our recent study of C. elegans [Chen et al.,
submitted], four different mutants were created, along with a wild type (Wt), and
observed under dietary restriction. The mutants consisted of a knockout of the Daf-
2 gene (D2), a knock-out of the S6k gene (S6k), a knock-out of both genes (DM),
and a triple mutant that also knocked out the Daf-16 gene (TM). Observation of the
different groups showed that mutant type had a significant impact on lifespan (see
figure 4.1). It was expected that knocking out both the S6k gene and Daf-2 genes
would increase lifespan [Chen et al., submitted]. Likewise, it was not a surprise that
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WildType (Wt) Sk6 D2 D2−Sk6 (DM) D2−Sk6−Sk16 (TM)
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Figure 4.1: Observed mean lifespan of the different mutant types. The non-linear
increase in lifespan in the double mutant was an indication that there is something
of interest occurring when both the S6k and Daf-2 genes are suppressed.

knocking-out the Daf-16 gene would arrest this process. However, what was of great
interest was the apparent interaction between the S6k and Daf-2 knockout, based on
the greater than 5-fold increase of lifespan in DM.

Generally, suppressing a gene produces a cascade effect that will influence the
expression of other genes. The goal of the knockout experiment is not to determine
whether the knocked-out gene effects the phenotype, but which other genes are also
altered - either by being over or under expressed. This can suggest a biological
pathway for expression of the phenotype of interest. Observation of the lifespan data
led to the hypothesis that there is an interaction between the Daf-2 and S6k gene
that led to an increase in lifespan. Two biological hypotheses are put forward. The
first is that suppression of both genes led to an increase in the change of expression of
other genes. This is termed the quantitative interaction hypothesis. The second, and
in some ways more compelling hypothesis, is that suppressing the two genes leads to
a previously unseen change in some other genes. This is dubbed the synergistic or
qualitative interaction hypothesis.

Given these results, the goal is to determine which genes are being changed in the
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double mutant case and whether any biological insight could be gleamed from them.
To accomplish this, both GO and MA analysis were undertaken. GO analysis is a
means to determine whether a set of genes possess a common function more than
what would be expected by chance. MA examines the sequences of different genes to
see if they share certain patterns. Such patterns, or motifs, might be indicative that
they share a common transcription or regulatory factor.

In analyzing the data, one would first perform a statistical test to determine which
genes are differentially expressed in the double mutant condition. After, it would be
necessary to appropriately group genes to pass on to the secondary GO and MA
programs. This would typically be accomplished via clustering. Given the nature of
the experiment, and the finer hypotheses, a more targeted approach was undertaken
to explicitly match genes to different hypotheses. Such an analysis results in a very
homogeneous group of genes, more than would be accomplished via clustering. After
passing these groups to the secondary analysis significant biological discoveries were
made that were able to be replicated and contribute to the understanding of the
genetic mechanism behind lifespan in C. elegans.

4.2 Methods

4.2.1 Data

See Chen et al. [submitted] for discussion of the biological experiment. Briefly, a
wild type and four mutant C. elegans were created. The four mutants consisted of
a knockout of the Daf-2 gene (D2), a knockout of the S6k gene (S6k), a knockout of
both genes (DM), and a triple knockout (TM) of the Daf-16 gene in addition to Daf-2
and S6k. TM was meant to serve as a secondary control. For each of the five groups,
10 C. elegans were tested for a sample of 50 specimens. Life span was monitored in
each specimen with average lifespan shown in figure 4.1.

Genome wide gene expression data was assessed with the Roche NimbleGen micro-
array. There are 119, 657 probes across 23, 945 genes on the array, with most genes
having 5 probes. The different probes potentially represent different isoforms or
splices of the gene and are therefore each biologically meaningful.

4.2.2 Hypotheses

Based on the observed lifespan data two primary hypotheses were generated.

1. A probe is only differentially expressed with the suppression of both the Daf-2
and S6k genes. This is the synergistic or qualitative interaction hypothesis.

2. A probe is differentially expressed to a greater extent within the double mutant.
This is the quantitative interaction hypothesis. Within this hypothesis there are
three sub hypotheses
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(a) A probe is differentially expressed in D2 and the expression is amplified in
DM

(b) A probe is differentially expressed in S6k and the expression is amplified
in DM

(c) A probe is differentially expressed in D2 both S6k and the expression is
amplified in DM

It should be noted that there are some scenarios excluded from these hypothesis.
For example, if a probe is differentially expressed in D2 and then suppressed in DM
this would not be covered. It is this specific hypothesis that gives the following
analysis its strength. Since the goal of the analysis is to explain the observed 5.5 fold
increase lifespan for DM, we are looking for probes that are exaggerated in DM.

4.2.3 Primary Analysis

Linear Model

Lowess normalization using the limma package in R was used to normalize the
expression data [Smyth, 2005]. A general linear model was fit to each probe (Yi) also
using the limma package. The model was

E(Yi|X) = β1I(Baseline) + β2I(D2) + β3I(S6k) + β4I(D2) ∗ I(S6k) (4.1)

Since each term is a series of indicators, this represents a non-parametric model of
the test of the E[expression|mutant type]. The baseline was used to be both the Wt
and the TM specimens.

The linear model was used to examine each of the four hypotheses. The primary
parameter of interest is β4. This represents the interaction in the double mutant. A
rejection of the null hypothesis that β4 = 0 for a given probe, indicates that in the
double mutant there is a departure from additivity in the expression of that probe in
the double mutant.

As indicated in the hypothesis section, not all scenarios where β4 6= 0 are of in-
terest. Following the example from above, if β2 > 0, β3 = 0 and β4 < 0, this would
not be of biologic interest since the DM does not lead to an amplification of expres-
sion of the particular probe. Table 4.1 shows the beta values for the corresponding
hypothesis.

Selection of Probes

The linear model was fit first using WT as the baseline. To estimate the stan-
dard errors an empirical Bayes procedure was used, also through the limma package
[Smyth, 2004]. The empirical Bayes approach calculates a moderated t-statistic for
each contrast of interest. The parameters to calculate the posterior variance of the
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Hypothesis β Value
1 β2 = β3 = 0, β4 6= 0
2 (a) β3 = 0, β2, β4 6= 0, sign(β2) = sign(β4)
2 (b) β2 = 0, β3, β4 6= 0, sign(β3) = sign(β4)
2 (c) β2, β3, β4 6= 0, sign(β2) = sign(β3) = sign(β4)

Table 4.1: Table of hypotheses and the corresponding β values

t-statistic are based off the observed the data. For gene expression studies that of-
ten have many probes to test, but few samples, this provides an efficient means to
estimate the inference for a test statistic. The posterior variance is estimated as:

s̃2
j =

d0s
2
0 + djs

2
j

d0 + dj
(4.2)

This represents the convex combination of the prior variance (s2
0) with the observed

variance (s2
j), scaled by the degrees of freedom (d0 & dj respectively). An inverse

Chi-square distribution is used for the prior, which is the typical conjugate prior.
The empirical Bayes procedure results in an non-monotonic change in the test

statistics. This can create a more robust statistic1. Given the modest sample size
and the fact that there is not a perfectly robust procedure for deriving inference
at this sample size (i.e. no obvious permutation test and n is too small to rely on
a bootstrap) one must parametrically estimate the variance. The empirical Bayes
procedure shrinks large estimates of the var(β̂ij) (i.e. s2

0) towards more “typical”
values. The induced shrinkage will most significantly impact those genes with larger
variances (see Figure 4.2(a)). This will often have a conservative outcome as genes
that would have been selected only because s2

0 is relatively small (and not |β̂j| large)
become relatively insignificant. This will ultimately lead to a different ranking of the
genes (see Figure 4.2(b)).

The p-values for each of the contrasts of interest were adjusted to control the false
discovery rate (FDR) using the Benjamini-Hochberg (BH) procedure [Benjamini and
Hochberg, 1995]. For each of the four hypotheses, probes were selected where the
corresponding β values had an adjusted p-value less than 0.05. Due to the presence
of a second baseline group (TM) it was possible to add robustness to the final probe
set. The analysis was repeated using TM as the baseline. Only those probes that
matched a hypothesis in both analyses were passed onto the secondary analyses.

1Moreover, because s̃2j −−−−→n→∞
s20 any bias introduced will go away asymptotically.
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Figure 4.2: Impact of the empirical Bayes procedure on test statistics. Figure (a)
shows the change in the standard deviation estimate for a random set of 10,000
genes. Most values are decreased (indicated by being above the 0 line), with those
with smallest empirical standard deviations receiving less shrinkage. The vertical
line indicates the mean of the unadjusted standard deviation, illustrating that the
greatest shrinkage occurs for larger values. For extreme values, the standard deviation
is actually increased due to the lack of prior mass for the empirical Bayes procedure.
This leads to an overall change in the ranking of the genes (b). The top 1000 genes
based on the moderated t-statistic are compared to the rank without moderation.
The funnel shape indicates that the change in ranking becomes more dramatic as one
goes further down the list.
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4.2.4 Secondary Analysis

Secondary analysis is an important part of gene expression studies, as they allow
one to gain further insight into the type of changes that occur in the experiment. They
can illuminate both the function of the genes that are differentially expressed and show
how they may be regulated. While most secondary analysis programs will provide a
p-value with the output these should not be thought of as true hypothesis testing.
Instead, these are qualitative analyses where the p-values should be interpreted as a
ranking of top findings. In the current study, two secondary analyses were performed:
MA and GO.

Motif Analysis

MA is a process of finding patterns in the sequences of different genes. If a group
of genes share a sequence pattern upstream from the gene, it is possible that those
genes are regulated by the same transcription factor (TF). Identifying such a TF
could provide a means of controlling the expression of such a group of genes.

There are number of different approaches for discovering motifs utilizing a range
of statistical methods including the EM algorithm, Gibbs sampling and genetic algo-
rithms [Das and Dai, 2007]. While there are number of available programs for MA,
the Amadeus platform was used [Linhart et al., 2008]. In Amadeus, motifs are dis-
covered through a series of phases, where in each phase the requirements for passing
on a motif are refined. The p-value is based on determining the probability of see-
ing that motif occurrence, under the null hypothesis that the genes in the target set
were drawn randomly, independently, and without replacement from the background
set. This is calculated via the hypergeometric distribution. Unlike in GO analysis
(see below) there is no notion of how many different motifs are tested so there is no
standard control for multiple testing2.

Like most MA software, Amadeus allows the user to input a list of genes for a
specific organism. After specifying a region to search and a motif length, overrepre-
sented motifs are identified. One advantage of Amadeus is that it then compares the
identified motif to a list of known TF motifs, based on the TRANSFAC database and
any similar TF motifs are identified. Of course, not all identified motifs will have a
corresponding TF binding site while some may have multiple similar one.

For the MA, the unique genes were divided into those of being over or under
expressed. The unique genes for each of the eight sets were fed into Amadeus. Motifs
of length 8 and 10 base-pairs (bp) were searched for in a range of 1500 bp upstream
of the gene to 400 bp downstream.

2Amadeus does allow the user to control for multiple testing via a bootstrap procedure. However,
since the goal of MA is qualitative in nature, and the bootstrapping can be very computational it
was deemed unnecessary
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Gene Ontology Analysis

GO analysis is a means of determining whether groups of genes share a similar
function or ontology. Known genes are placed on a directed acyclic graph (DAG)
based on their biological, molecular or cellular functions. Given a collection of genes
and a reference set, an analysis is performed whether any of the terms are over-
represented, typically by comparing to the hypergeometric distribution, in what is
referred to as the term-for-term approach.

Using the notation from Grossmann et al. [2007], to calculate the statistic we
assume that there is a population of genes, P and study set S, of size m and n
respectively. The term one is interested in is denoted by t and Pt and St refer to
those genes with those terms in the population and study sets, each being size mt

and nt. Now, let a set Σ of size n be randomly sampled without replacement from P,
and let σt be the number of genes in Σ with term t. The probability of observing σt
annotations can be calculated via the hypergeometric distribution

P (σt = k) =

(
mt

k

)(
m−mt

n−k

)(
m
n

) (4.3)

To assess the probability, one sums (4.3) from nt to the maximum possible number
of annotations.

P (σt ≥ nt) =

min(mt,n)∑
k=nt

(
mt

k

)(
m−mt

n−k

)(
m
n

) (4.4)

This presents a one-sided Fisher exact test.
Grossmann et al. [2007] showed that there is actually a flaw in this test statistic

since it does not take into account dependencies between parent and child terms.
They proposed another statistic, which they termed the parent-child approach.

Let pa(t) denote the parents of t. Based on the hierarchical tree mpa(t) ≥ mt.

P (σt = k|σpa(t) = npa(t)) =

(
mt

k

)(
mpa(t)−mt

npa(t)−k

)(
mpa(t)

npa(t)

) (4.5)

P-values are calculated as in (4.4). Grossmann et al. showed that this approach gives
more stable results and is implemented in the program Ontologizer.

While the results are inherently qualitative, they provide a valuable degree of
context to a gene expression experiment and can present new directions for research,
if unexpected terms appear. GO analysis was performed for the probe sets for each
of the 4 hypotheses. Significant terms were discovered using the parent-child analysis
using an FDR cutoff of .10.



67

4.2.5 Follow-up Analysis

Based on the MA and GO analysis targets of interest were determined for follow-
up analysis by the consulting biologist. For the MA, since it is more straightforward to
suppress a TF than to induce one, genes that control the TFs that showed indications
of being up-regulated were targeted. C. elegans with the TF knocked out were created
for each of the four conditions and lifespan was monitored. Based on GO analysis,
gene groups of interest were also followed up of for further suppression studies and
analysis, though have not yet been performed.

4.2.6 Comparison to Standard Analysis

To compare the results to standard practice, a cluster analysis was performed.
The clustering algorithm chosen was HOPACH [van der Laan and Pollard, 2003].
HOPACH is a flexible clustering algorithm well suited for working with large ge-
netic data. HOPACH, combines the strength of both centroid based algorithms (e.g.
k-means, PAM) and hierarchical approaches (e.g. agglomerative, divisive). Like hi-
erarchical algorithms, one does not need to pre-specify the number of clusters in the
data. This is desirable in genetic data as the number of clusters is often unknown.
However, like centroid based algorithms, one receives a strong notion of cluster mem-
bership, which is important for grouping of the data. The HOPACH algorithm is
implemented in the R package hopach.

To select probes, the same linear model was fit, with β4 being the only parameter
of interest. Probes that showed significant changes in β4 with respect to both the
WT and TM were selected for clustering. The set of probes were clustered using the
cosine angle distance metric. Since clustering using hierarchical methods often results
in a few large clusters and many small or singleton clusters, only the large clusters
were examined. To compare the quality of each method for grouping the data, the
silhouette distances [Rousseeuw, 1987] based on correlation distance were calculated
for each approach. MA and GO analysis were performed for the HOPACH based
clusters and the results were compared.

4.3 Results

4.3.1 Probe Selection

Gene expression data was successfully collected on 47 of the 50 samples (94%).
The linear model in equation (4.1) was fit to the data using the Wt and TM as
baseline. All probes that had an BH-FDR adjusted p-value less than .05 on β4

were selected. There were 20, 563 and 32, 854 such probes between the WT and TM
baseline groups respectively. Of those, 12, 406 were overlapping and were passed on
to the comparative analysis (see below).
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Groups of probes were selected based on the hypotheses define in Table 4.1. Table
4.2 lists the number of significant probes probes per hypothesis, including the number
overlapping between the two conditions. The largest grouping were those from Hyp1
and Hyp2a.

Wt Baseline TM Baseline Overlap
Hyp 1 3386 5558 1444
Hyp 2a 1911 1798 806
Hyp 2b 300 54 6
Hyp 2c 262 130 42

Table 4.2: Number of Significant Probes from each analysis

4.3.2 Motif Analysis

The four probe sets were divided into up and down regulated groups and MA was
performed. Due to sample sizes only the probes from Hyp1 and Hyp2a were analyzed
(Hyp2b and Hyp2c had too few probes to obtain meaningful results). MA was run
for each probe set twice - looking for motifs of length 10 and 8 respectively. The top
five motifs were inspected for any transcription factors of interest, determined by the
consulting biologist.

Hypothesis Motif Length Motif P-value TF of Interest
(Direction) (Rank)

Hyp 1 (Up) 10 3.3× 10−18 (5) HSF
Hyp 1 (Up) 8 2.3× 10−19 (1) COUP-TF:HNF-4, XBP-1,

ABF, HTF, EmBPm,
HNF-4alpha, NMyc, c-Myc

Hyp 1 (Up) 8 9.0× 10−13 (3) ABF1
Hyp 2a (Up) 10 4.4× 10−17 (5) FOX03, FOX04, DAf-16, FOX01
Hyp 2a (Up) 8 3.6× 10−12 (2) RP58
Hyp 2a (Up) 8 4.2× 10−12 (3) HSF
Hyp 1 (Down) 10 9.0× 10−13 (2) YY1
Hyp 1 (Down) 8 9.0× 10−13 (1) SREBP1
Hyp 2a (Down) 10 4.4× 10−17 (3) XFD-3
Hyp 2a (Down) 8 3.6× 10−12 (2) SREBP-1, ROAZ

Table 4.3: Listing of the interesting MA results as determined by the consulting
biologist.
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Figure 4.3: GO Tree for Hyp 1 condition. Significant terms are highlighted.

4.3.3 Go Analysis

GO analysis was performed on the four hypothesis gene sets. Significant GO terms
were selected with a BH-FDR adjusted p-value less than .10. Again, due to set sizes,
the only two analyses with significant terms were Hyp1 and Hyp2a. The GO trees
are shown in figures 4.3 and 4.4. Due to the complexity of the GO tree for Hyp2a,
figure 4.5 lists the significant terms.
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The Hyp2a GO analysis revealed a number of interesting findings. Not surpris-
ingly, but a good confirmation, genes associated with aging and lifespan were over-
represented (figures 4.4 & 4.5). Of greater interest, terms reflecting phosphorylation
(figure 4.3) and carbohydrate processes (figures 4.4 & 4.5) were represented, providing
additional hypotheses for the mechanism behind life span extension.

4.3.4 Follow-up Analysis

Since experimentally, it is more straightforward to follow-up on upregulated TFs
(it is easier to suppress a TF than induce) only those have been examined to date.
Nineteen genes corresponding to the TF targets of interest were identified by the con-
sulting biologist. If the TF is involved in increased lifespan observed in the mutants,
than suppression should return lifespan back to baseline. Table 4.4 shows the average
lifespan under different mutant conditions. The Mack-Skilling statistic [Mack and
Skilling, 1980] was calculated comparing each of the TF knockouts to the control,
and the associated p-value is shown. The Mack-Skilling test is a non-parametric test
comparing k treatments across b blocks. In the present study, each knockout was
compared independently against the control case so k = 2. The b blocks were the 4
mutant classes. The statistic was implemented in R and calculated as described in
Hollander and Wolfe [1999]. The χ2 approximation was used to calculate the p-value.

Unsurprisingly Daf-16 showed the greatest degree of suppression (this is why it
was used as a control in the initial experiment). Of the other 18 genes, 11 showed
indication of being involved in lifespan extension. Of greatest interest were those
that showed a suppression in the DM. Follow-up Wilcoxon tests were performed just
comparing the DM in the control and knockout groups. Eight of the 19 had Bonferonni
adjusted p-values less than 0.05. These were: daf-16, hsf-1, xbp-1, F17A9-3, mxl-3,
che-1, nhr-64, hlh-10. These genes represent further targets for study.

The GO analysis suggested potential direction for follow-up. The Hyp1 analysis
suggested phosphorylation was overrepresented (figure 4.3) and biochemical analy-
sis indicated that the s6k single mutant and DM have increased phosphorylation
levels of AMPK. This is essential for the synergistic lifespan extension by DM [Chen
et al., submitted]. It is speculated that there might be additional kinases and/or phos-
phatases involved in this regulation. Therefore, examination of the genes from the DM
over-represented group with the GO term ”macromolecule modification/phosphorus
metabolic process” will be further analyzed for their effects on AMPK phosphoryla-
tion and DM synergistic lifespan extension. Similarly, there are biochemical explana-
tions for why carbohydrate processes may be involved in lifespan extension and these
too will be further analyzed.
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Figure 4.5: GO Terms for Hyp 2a condition. Bars reflect −log10 of the p-values.
Labels at end of bars indicate the number of probes in the hypothesis set versus the
number of probes in the full dataset had the term.

4.3.5 Comparative Analysis

To compare the modeling approach to a more standard analysis, the data was
also clustered, as would be done in a typical micro-array experiment. There were
12,406 probes that showed differential expression in β4 with respect to both WT
and TM. After clustering, there were 668 clusters, five of which had more than 500
members. The silhouette distance for these five clusters are shown in figure 4.6. The
Hyp1 and Hyp2a groupings were divided into up and down regulated groups and the
corresponding silhouette are shown in figure 4.7.

The results suggest that the model based groupings are a bit tighter and more
homogeneous. It is noted that there is some negative silhouettes for Hyp1. This is not
surprising since the silhouette was based on correlation and one would expect that
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Gene Knock-Out N2 S6k D2 DM MS p-value
control 12.5 14.5 23.0 52.4 NA
daf-16 9.0 8.9 9.0 11.6 < 1× 10−16

hsf-1 7.5 6.2 9.8 12.0 < 1× 10−16

xbp-1 11.6 10.8 20.7 36.7 1.1× 10−16

aha-1 13.2 14.9 22.0 46.0 0.86
F17A9.3 11.9 15.9 22.1 43.7 0.27
sbp-1 10.4 9.8 21.5 50.3 1.1× 10−16

nhr-85 11.4 13.0 28.2 48.3 0.013
hlh-30 12.5 12.2 15.5 43.2 3.9× 10−14

pha-4 10.1 12.3 24.6 48.9 2.1× 10−8

mxl-3 13.2 14.9 23.4 39.2 0.50
che-1 13.5 14.7 23.5 37.9 0.71
alr-1 11.6 13.8 23.9 44.0 9.8× 10−4

unc-55 12.7 14.2 22.3 48.8 0.25
ahr-1 11.8 15.1 23.1 47.5 0.19
nhr-64 12.9 15.0 23.6 42.2 0.73
rnt-1 12.3 13.7 20.3 45.9 5.7× 10−4

crh-1 11.9 11.3 21.2 49.8 1.8× 10−9

pag-3 12.3 13.9 21.2 44.9 0.0010
hlh-10 12.0 14.4 23.8 40.4 0.0069

Table 4.4: Average Lifespan for the control and various knock-outs. Genes where
suppression lead to the greatest departure from control lifespan are highlighted.

for Hyp1 the expression values for the D2 and S6 conditions would be more random
than what one would see in Hyp2. Overall, it is noteworthy, that an approach that
was not aimed explicitly at detecting homogeneous groupings was more capable of
doing so than an approach that was attempting to find homogeneous groupings.

Examination of the five HOPACH based clusters revealed minimal overlap with
the model based groupings. Cluster 3 corresponded to the Hyp1 up condition with
an overlap of 445 probes (41% of the cluster). Similarly, cluster 4, corresponded
with the Hyp1 down condition with an overlap of 220 probes (37% of the cluster).
However, there were no overlapping clusters with any of the Hyp2 situations. This is
not surprising, as hypothesis 2 represents a much more subtle association than Hyp1
and is probably harder to discover.

MA and GO analysis were performed on the five clusters. The MA analysis re-
vealed 8 transcription targets of interests (compared to 19 in the main analysis). Five
of these overlapped with those previously identified, suggesting little new information
was gleamed. Moreover, it is unclear, based on the cluster results whether the genes
are up-regulated or down regulated, making a biological follow-up less clear.
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3 :   1081  |  0.11

4 :   589  |  0.14

5 :   561  |  −0.11

Figure 4.6: Silhouette distances based on HOPACH clustering.

For the GO analysis only clusters II, III & V had significant GO-terms. Cluster
III, which shared probes in common with Hyp1, also shared the terms relating to
phosphorylation. Clusters V had the most amount of significant terms (15) but most
were fairly general (e.g. intracellular part, cell cycle & development process) and did
not hint at specific mechanisms. Cluster II had only 3 significant terms, with the
most intriguing one being “regulation of nitrogen metabolic process.” In total, the
GO analysis from the model based analysis was more illuminating.
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Figure 4.7: Silhouette distances based on model based groupings. Groups 1 & 2
correspond to Hyp1 up and down regulated respectively. Groups 3 & 4 correspond
to Hyp2a up and down respectively.

4.4 Discussion

This analysis represents a direct approach towards detecting differentially ex-
pressed genes to pass on for secondary analysis. Since every gene expression experi-
ment is different, differing hypothesis will be generated. Models that can best capture
those hypotheses will be most successful in detecting gene groupings of interest.

In this analysis, an unexpected pattern in lifespan was detected suggesting an
interaction between two genes (Daf-2 & S6k). Four potential hypotheses were derived
and an appropriate linear model was fit to the data to test them. Probes were grouped
based on whether they conformed to the hypotheses. Such groupings were ultimately
more homogeneous than had one used a sophisticated clustering algorithm. While
clustering is useful when no clear hypothesis is able to be formulated, this was not
the case in this situation.

The use of GO and MA as secondary analyses tools was able to provide new targets
for future study and helped explain the underlying biology. While these analyses
are fairly qualitative, when used carefully, valuable information can be extracted.
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Various TF were identified as potentially up-regulating genes involved in the lifespan
extension. Nineteen different genes were tested to see if suppression of these TF could
halt the lifespan extension. Of them, 12 (63%) showed an ability to change lifespan
extension. Of particular interest are eight genes that significantly change lifespan in
the DM.

GO analysis also proved to be informative. Two potential areas of further ex-
ploration were identified: phosophoralytion processes and carbohydrate processes. It
was also encouraging that genes known to be associated with aging were part of the
identified gene sets.

Ultimately the power of this study was the well designed biological experiment.
Two separate baselines groups were used, allowing the replication of results and
adding a degree of robustness. Moreover, the ability to follow-up findings in a wet
lab allowed for the confirmation of the statistical results. Obviously not all studies
will be so designed and the specific analysis plan will need to be modified for the
particular experiment and question of interest. In the end, this analysis highlights
the need to not approach micro-array experiments in a cookie cutter way, but target
and change the analysis for the particular study. It is then that meaningful results
are obtained.
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Chapter 5

Conclusion

These studies represent the value of asking specific questions about the data.
When different questions are asked about different datasets, different methods will be
necessary. Along the way, I also hope to have shown a unity of approach. I have devel-
oped an interest (and hope expertise) in the application of statistical learning meth-
ods. When used intelligently these methods represent a flexible and non-parametric
means of analyzing data. However, when used carelessly the results may be at best
muddled or at worst misleading.

The question of determining which genes are related to disease is extremely chal-
lenging. I do not suggest that these are the only or even necessarily the best ap-
proaches. While the goal of these studies is inference, they are all exploratory in
nature. With that in mind it is better to utilize multiple approaches to interrogate
the data rather than dogmatically rely on one method. As more hypotheses are de-
rived, we can then progress to a state of performing targeted analyses that allow us
to get honest inference and assess causality.

Until we reach that point there is still much important and interesting work to be
done in statistical genetics. I eagerly await the new datasets that will find their way
to me, as I’m sure they will inspire new questions and new methods.
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Appendix A

Some Theory Behind Random
Forests

A.1 Introduction

The purpose of this section is to enlighten some of the theory behind the Random
Forests (RF) algorithm1. RF is in many ways a quintessential black box algorithm
with many moving parts which spits out a series of “answers.” However, underlying it
is a build-up of some simple theory which helps in understanding how best to optimize
it. This write-up is written specifically to understand the use of RF for the type
of classification problems one would encounter in large genetic associations studies.
While most of the discussion is generally applicable, some of the it (particularly that
of Section A.2.1) will differ when the outcome is continuous.

A.2 The Components of the Random Forests

Algorithm

A.2.1 Bias - Variance Decomposition

One of the first steps in understanding a predictor is to see how its predictions
contribute to bias and variance. We start with the setup, given an outcome y, in-
put vector x, relationship y = f(x) + ε, prediction f̂(x|T ) and training set T , the
well known decomposition for prediction error (PE) under squared-error loss with a
continuous outcome is:

1This was initially written in preparation for my qualifying examination (which focused a great
deal on RF). I found the theory behind RF quite interesting, particularly the literature on 0-1 loss
(section A.2.1) and decided to include it as an Appendix.
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ET [y − f̂(x|T )]2 = E[ε|x]2︸ ︷︷ ︸
Noise

+

Bias︷ ︸︸ ︷
[f(x)− ET f̂(x|T )]2 +ET [f̂(x|T )− ET f̂(x|T )]2︸ ︷︷ ︸

Variance

(A.1)

The first term is the variance of the outcome y (E[ε|x] is assumed to be 0) and is
referred to as the noise. This represents the irreducible error. The next two terms
represent the reducible error. The first of these is the bias. We can think of the bias
as the systematic difference between the prediction and the target. The final term
is the variance. It is the measure of randomness of the prediction. It is important
to note that the variance is independent of the true outcome y and the true function
f(x).

In classification with a 0-1 outcome we are trying to minimize P (f̂(x) 6= y), y ∈
{0, 1} This is usually done under miss-classification loss

l(y, f̂(x)) =

{
1 if y 6= f̂(x),

0 if y = f̂(x).
(A.2)

In the mid 1990s multiple authors attempted to define a decomposition for 0-1 loss
[Dietterich and Kong, 1995, Kohavi and Wolpert, 1996, Breiman, 1996a, Tibshirani,
1996]. Most of the effort centered around trying to find a decomposition that was
additive in the components of noise, bias, and variance, as in (A.1). Each author pro-
posed a slightly different decomposition, depending on which properties they hoped
to satisfy.

Unfortunately a simple thought exercise shows that bias and variance are not
additive when the goal is classification. First, note that if a classifier predicts the
correct class, P (f̂(x|T ) = y ≥ .5), when the true class is class 1, it is unbiased at
x. If we have an unbiased classifier, we would desire for the classifier to also have
low variance. However, if the classifier is poor, P (f̂(x|T ) = y < .5), we say it is
biased. In this scenario we would actually desire the classifier to have high variance
because we want to increase the chance that the classification “flips.” In this sense,
to minimize PE, we see that for an unbiased (good) classifier we want low variance,
but for a biased (poor) classifier we want high variance.

Friedman [1997] recognized this interaction between bias and variance. After
averaging over all training sets, he decomposes the relationship as,

P (f̂(X) 6= y) = |2f(X)− 1|P (f̂(X) 6= f ∗(X)) + P (f ∗(X) 6= y) (A.3)

where f ∗(x) is the Bayes classifier, and X designates over all inputs, x. Friedman
referred to P (f̂(X) 6= f ∗(X)) as a decision boundary error. Making the simplifying
assumption that P (f̂(X)) is normal, he showed this boundary could be represented
by:
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P (f̂(X) 6= f ∗(X)) = Φ

[
sign(1/2− f(X))

Ef̂(X)− 1/2√
var(f̂(X))

]
(A.4)

The “boundary bias” is then represented by sign(1/2 − f(X)(Ef̂(X) − 1/2). It
is clear that when one predicts to the correct class, “boundary bias” is negative, and
PE decreases. Moreover as [Ef̂(X) − 1/2] increases, PE decreases only when one
predicts to the correct class. Furthermore, it is evident that decreasing the variance
of the predictor is only beneficial when one is on the correct side of the boundary. In
this way we see the strong multiplicative interaction between bias and variance.

Gareth [2003] followed this up by suggesting a unified bias-variance decomposition,
applicable to all symmetric loss functions. Specifically, he recognized that there is
both bias, and the effect due to bias. Similarly there is variance and the effect due to
variance. He showed that under squared-error loss these are equal, under other losses
they are not.

In genetic studies, we are often not interested in prediction but instead variable
importance. It is then natural to ask why concern ourselves with these issues. The
concern arises when it comes to tuning our algorithm. In the classification setting,
one may not be interested in predicting the class outcome, but instead the underlying
probability. Friedman [1997] showed that in the probability estimation setting the
bias-variance again becomes additive (assuming squared loss). In an application to
K-Nearest Neighbors (K-NN), he demonstrated that the implication of this is that
different tuning parameters will be favored depending on the task at hand.

In RF (and all machine learning algorithms) there are tuning parameters that need
to be chosen. The parameters are chosen by minimizing the prediction error (via cross-
validation, out of bag estimation etc.). The criterion used will be the minimization of
the miss-classification error rate (since we do not observe the underlying probabilities).
As Friedman, shows this will lead to the choice of different tuning parameters.

A.2.2 CART

Underlying Random Forests is the Classification and Regression Tree (CART)
algorithm [Breiman et al., 1984]. Trees are an appealing base learner because they
present a simple method to represent complex relationships, particularly those that
are present in genetic data. Firstly, the tree structure represents a conditional model
making it suited for finding interactions and higher order effects. Furthermore, since
trees do not assume linearity in effects, instead performing binary splits, it is ideally
suited for discovering recessive and dominant genetic effects. The main type of effect
ill suited for trees are in additive effects.

The CART algorithm recursively searches for a split that partitions the data in
such a way that minimizes a splitting criterion. This is referred to as a “greedy”
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search. After a stopping criterion is met, the final splits partition the predictor space
into hyper-rectangles. These regions are referred to as leaves or terminal nodes of the
tree.

In the case of classification the splitting criterion, Qm(T ), is typically the gini-
index (though other convex losses can be used). For a node m, in region Rm, with
Nm observations, we define

Qm(T ) ≡ p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k)

The gini index is then:

GI =
K∑
k=1

p̂mk(1− p̂mk)

= 2p(1− p) when k = 2

(A.5)

One nice feature of this criterion is that it is prefers pure nodes, unlike miss-classification
loss.

Since a fully grown tree, T0, will have high variance, (changes in the training
data will lead to different tree structures), trees are typically pruned, by finding the
sub-tree Tα ⊆ T0 which satisfies the criterion:

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T | (A.6)

where |T | is the number of terminal nodes in the tree and α is a tuning parameter
chosen typically by cross-validation. However, in Random Forests, the trees are not
pruned but kept at their maximal depth. This results in each tree having low bias,
but high variance. This variance is alleviated by bagging (see next section).

A.2.3 Bagging

Brieman proposed Bagging (Bootstrap Aggregating) as a solution to the instabil-
ity observed in classifiers such as CART trees [Breiman, 1996b]. In ensemble methods
such as bagging, the algorithm used (i.e. CART) is referred to as the “base learner.”
Bagging is a simple procedure where one selects successive bootstrap samples of the
data, (XB, Y B) and gets a prediction, f̂(xB), on each of these samples. The fi-
nal prediction, f̂bag(x|T ) is determined by either averaging each of the predictions,
1
B

∑B
b=1 f̂

B(x) (for a continuous outcome), or taking a majority vote, argmaxkf̂bag(x)
(for classification). To estimate the P (f(x) = k), the intuitive approach is to average
the probability estimate of each of the base learners (in CART this would be the
terminal nodes). However the better approach to estimate this quantity is to divide
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the number of bagged samples that vote for class k by the total number of bagged
samples (see Hastie et al. [2009] pg.286 for discussion).

The motivation behind bagging is to simulate having multiple training sets. If
one had access to all training sets, T , then there would be no variance in the fi-
nal prediction. Bagging then works by reducing the variance of the final predictor.
Bühlmann and Yu [2002] and Friedman and Hall [2007] each showed that bagging
works via smoothing out first order and higher order variance terms. With respect
to bias, since the distribution of (XB, Y B) ∼ (X, Y ), the bias of f̂bag(x) equals the

bias of f̂(x), so there is no (asymptotic) increase in bias induced by bagging, though
there can be in finite samples.

Another perspective on bagging is that manipulation of the input space is able to
increase the search space for an optimal solution [Dietterich, 2000a]. Breiman [1996d]
argued that this process works best with unstable predictors. He defined an unstable
procedure as one where a small change in the data can lead to large changes in the
prediction. He showed that procedures like CART are unstable while procedures such
as KNN are stable.

In the case of classification, Breiman [1996b] argued that bagging is effective in
the case of order-correct predictor which he defined as

argmaxkf(k|x) = argmaxkP (j|x) (A.7)

This simply means that if a classifier predicts class k for a given input x then the
aggregated classifier will also predict class k, i.e. is unbiased at x. Similar to the
previous discussion of the bias-variance relationship for classification, Breiman noted
that for good classifiers bagging can be very useful, but for bad ones, bagging can
actually be harmful. This is because for good classifiers we want to decrease the
variance (to reduce overall PE) but for bad classifiers we want to increase the variance
(to reduce the overall PE).

Bagging Type

Bühlmann and Yu [2002] and Friedman and Hall [2007] also both showed that
m < n sampling without replacement, where m = n/2 is just as effective as bagging
with replacement, and computationally more efficient. Bühlmann and Yu referred to
this as subagging (subsample aggregating).

Dietterich [2000a] notes that large datasets don’t see the same benefits from bag-
ging as do smaller ones because each bootstrap sample is more similar to each other
than with a smaller data set. Subagging would serve three benefits. First would be
computational - since fewer observations are used in growing the trees. The second is
through a reduction in tree correlation - the trees would be more different from each
other. The third is in a reduction of tree size. This third component decreases the
degrees of freedom of the final model.
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Out-Of-Bag Error-rate

One of the appeals of bagging is that it presents a computationally efficient means
to calculate the generalized error (GE), the PE of f̂(x|T ) on training set T ′. The
best way to calculate GE is on an independent validation set. In lieu of one, the most
typical approach is to use V-fold cross-validation (CV).

For bagged learners, CV is computationally very expensive. However in each
iteration of bagging, approximately 37% of the sample is not part of the bootstrap
sample.

P (observation i ∈ bootstrap sample b) = 1− (1− 1

N
)N

≈ 1− e−1

= 0.632

Breiman [1996c] showed that this Out-Of-Bag (OOB) sample can be used as a test set
to get a measure of error. Over the entire bagging run, this error can be aggregated
for each input vector x. Some authors have referred to this as monte-carlo cross-
validation (e.g. Dudoit and van der Laan [2005].) Wolpert and Macready [1999]
showed that this can provide a more stable estimate of GE than typical V-fold CV.
If we define C−1 as the set of indices not in bootstrap sample b, and |C−1| as the
number of such samples, the OOB estimate becomes:

ĜEOOB =
1

N

N∑
i=1

1

|C−1|
∑
b∈C−1

L(Yi, f̂
B(xi)) (A.8)

Since each bootstrap sample will have a sample size of about .632N , this estimate
will behave similar to 2-fold CV.

Of particular interest, is that the OOB error-rate provides a convenient means
to choose tuning parameters in RF. As will be discussed, RF involves the choose of
multiple tuning parameters, and one can simply choose the settings that minimize
the OOB error-rate.

A.2.4 Randomization

A final method for improving ensemble learners is by injecting randomization into
the base learner. Many different procedures have been explored for this [Dietterich,
2000a]. Like bagging, the author showed that this randomization is able to expand
the search space and alleviate what they termed the “statistical” burden. In another
study, he showed that injecting randomization can be more effective than bagging for
large datasets [Dietterich, 2000b].

As noted in Hastie et al. [2009] the variance reduction induced by bagging is
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limited by the correlation between the trees, since the trees are not independent, only
identically distributed. If we denote the variance of each tree as σ2 and the correlation
between trees as ρ the variance of the average is:

ρσ2 +
1− ρ
B

σ2 (A.9)

As the number of bootstrap iterations increases, the second term goes to 0, and we
are left with the correlation between trees, ultimately limiting the benefits of the
bagging process. As dataset size increases, the correlation between bagged samples
increases, decreasing the effect of bagging. Injecting randomization into the tree
growing process serves to further de-correlate the trees, further reducing the variance.
Different proposals have been made for injecting this randomization and the Random
Forests algorithm is actually only one example of randomized tree algorithms (see
Cutler [1999]).

A.2.5 The Random Forests Algorithm

At this point we can consider the RF algorithm, proposed by Leo Brieman in 2001
[Breiman, 2001]. At its core, it is bagged CART trees, with injected randomization.

The first alteration is that instead of pruning the CART trees, they are grown
to maximal depth. These fully grown trees will be fairly unbiased but will be highly
variable (recall we prune trees in CART to eliminate the variance). This variance is
reduced via the randomization.

In RF, the randomization comes in the tree growing process. Before each split,
one chooses a subset m ≤ p of the number of predictor variables to search over. The
choice of m, denoted mtry, is the primary tuning parameter. The smaller mtry the
less correlation between trees and the greater the potential variance reduction via
bagging is possible. However, smaller mtry will also lead to more biased trees, hence
resulting again in the classic bias-variance trade-off.

RF reduces PE only through a reduction of variance, as the bias stays the same
(or gets a bit a worse). Breiman shows that unlike other methods (notably Boosting),
RF does not over fit as the number of trees increases. However, as noted in Hastie
et al. [2009] in the limit it can overfit.

A.3 Variable Importance

When applying RF for classification there are two primary forms of Variable Im-
portance: permutation importance & gini importance.
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A.3.1 Permutation Importance

The permutation importance (pVI) is the increase in misclassification for Out-Of-
Bag (OOB) person i after variable j has been permuted. If we consider the quantities:

• nijk = number of trees that split on variable j and misclassify observation i

• mijk = number of trees that do not split on variable j and misclassify observation
i

• pnijk = number of trees that split on variable j and misclassify observation i
when variable j is permuted

• pmijk = number of trees that do not split on variable j and misclassify obser-
vation i when variable j is permute

We can represent it as:

pV Iijk = (pnij + pmij)− (pnijk + pmijk)

= pnijk − nijk since pmij = mij

and we can calculate:

pV Iij =
1

ntree

ntree∑
k=0

pnijk − nijk

pV Ijk =
1

np

np∑
i=0

pnijk − nijk

pV Ij =
1

np× ntree

np∑
i=0

ntree∑
k=0

pnijk − nijk

(A.10)

The three quantities in (A.10) represent respectively the importance of variable
j for person i, the importance of variable j for tree k and the overall importance of
variable j. Each representation will have different utility depending on the question
of interest.

pVI has some nice properties. Since it is calculated off of the OOB sample, it can
be viewed as the predictive quality of that variable. A variable with no importance
would be expected to have E(pV I) = 0 since permutation should neither increase
nor decrease misclassification. There is also a notion of a population level effect of
the variable importance since the probability of being permuted to a different value
is determined by the observed population.

Adele Cutler (Personal Communication) proposed a T -like statistic where one cal-
culated the SE(pVI) across people2. In practice this measure is not always successful,

2Since people are assumed independent and trees are only conditionally independent it is more
appropriate to calculate the standard error using pV Iij rather than pV Ijk
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and she is uncertain of its utility. It is also applicable for any outcome or predictor
type.

Correcting Permutation Importance

An important consideration with applying RF to GWA data is the large degree of
correlation (referred to as LD) among SNPs. There are a couple of ways to formulate
the problem in calculating VI induced by correlation. Being a greedy algorithm,
RF searches over all variables. In calculations of VI, this creates a smoothing and
shrinkage of all VI measures - in an analogous way to Ridge regression. This creates
problems for correlated variables as the relative importance is diminished. Another
formulation is that since VI is calculated from the number of trees for which a variable
appears two SNPs that are in perfect LD will appear in trees about half as often as
each individual one may appear by itself, effectively lowering the VI of each SNP.
While this does not present a problem for prediction, it can skew the VI rankings.

Genuer et al. [2008] examined the impact of correlated variables, and found that
as the number of variables correlated with a true causal one increased, the variability
of the true causal one increased and its average importance decreased. Similar effects
were noted by other authors, notably Strobl et al. [2007].

Two proposals have been made for correcting for this analytically. pVI is calcu-
lated by dividing pV Iij by the total number of trees in the forest. Meng et al. [2009]
suggested dividing by the total number of trees of which variable j is a member. This
has the appeal that two perfectly correlated variables will no longer ”take away” from
each other. In practice, with large p this leads to highly unstable pVI measures. This
works best with less sparse solutions or smaller p where all variables have a chance
to be brought into the model.

Strobl et al. [2008] suggested using a conditional permutation scheme to calculate
VI. One empirically determines which variables are correlated with the variable of
interest, and uses the partitions in the individual tree to permute the variable of
interest within blocks. While effective when p is small, this has drawback of creating
a VI measure that is more computational and not uniform across trees.

A.3.2 Gini Importance

The gini importance (gVI) is the second primary form of RF VI. Unlike pVI, gVI
is only applicable in the case of classification. The gini index (GI) is the criterion
used when growing the trees in RF for classification. Recalling (A.5), for binary
classification,

GI = 2p(1− p)

where p is the proportion in the second class. The split which minimizes GI is the
preferred split. If we index the node for a given tree by n, we can then define:
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gV Ijkn = (GIparent −GIdaughter left +GIdaughter right)npkn

gV Ijk =
N∑

nj∈Treek

gV Ijkn

(summing over the nodes containing variable j in tree k)

gV Ij =
1

ntree

ntree∑
k=1

gV Ijk

(A.11)

gV Ijk directly measures the importance of variable j to tree k. The higher the
value the better the variable was in splitting the data. In this sense it is very different
from pVI. There is no notion of out of sample testing. Instead gV Ijkn can be thought
of as a χ2 test, conditional on what has already occurred in the tree (for the root
node it is conditional on nothing).

Another property is that gV Ij ≥ 0 with equality if variable j does not appear
in any tree. Like pVI it will have trouble with correlated variables but can also be
corrected by weighting. Since gVI is calculated based on the in-sample data it does
not have a population level interpretation as pVI. Instead gVI only considers the
relationship between the variable and the model.

pVI is the more commonly used form of VI. However, some intuition shows that
gVI can be a preferential VI measure when the predictive quality of the predictors
is low (i.e. OOB-ER ≈ 50%). Since pVI is calculated based on the increase of
misclassification after permuting variable j, if the baseline misclassification rate is
already relatively high, there is little chance for permutation to make prediction
worse. This will lead to a uniformly low pVI. Conversely, since gV I is calculated
relative to the grown tree it does not suffer this problem. It is easy to show this
via simulation. However, since variables have to be in the tree, there will always
be variables with high gV I and it is questionable how “important” a variable is
that doesn’t improve prediction. Moreover, it is much more challenging to consider
distributional properties for gVI.

A.3.3 Determining Important Variables

Once a VI measure has been decided upon, the next challenge is determining how
many variable are actually important. Ideally, one would be able to determine sta-
tistical properties for the VI measures to determine when the observed value differed
from an expected value. Some work has been performed in this area (e.g. Adele
Cutler’s T-test) but to this point no formal approach has been adopted.

In SNP studies we are often trying to determine which variables are worthy of
future follow-up. Generally we only look at the rank order of the top variables and
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decide to follow-up on those. This has led to a range of ad-hoc procedures. Dı́az-
Uriarte and Alvarez de Andrés [2006] suggesting removing the bottom 10% and re-
running until prediction decreased. In Goldstein et al. [2010] a procedure motivated
from principle components analysis was used. The scree plots of the VI measures were
examined and the cutoff occurred at the “elbow,” typically 25 SNPs. However this is
an unsatisfactory solution and ideally some objective cut-off could be determined.

A.4 Applying Random Forests

A.4.1 Tuning Parameters

Running RF involves the choice of two primary tuning parameters: mtry and the
number of trees (ntree). One of the appeals of RF is that it is considered relatively
robust to tuning parameter settings, make it an effective “off-the-shelf” algorithm.

Using the OOB Error-Rate

The OOB error-rate provides an unbiased estimate of the generalized error. Min-
imizing this error allows one to select the optimal tuning parameters to generate
the best predictive model. However, when one begins augmenting the dataset (e.g.
removing unimportant variables) the OOB error-rate is no longer an unbiased esti-
mate of the generalized error, though its minimization can still be used for tuning
parameter selection [Svetnik et al., 2004].

There is less of a guarantee that minimizing the OOB error-rate will provide the
optimal results when one’s goal is VI. However, theoretical work has shown that
the prediction error can be tied directly to the strength of association of the set of
predictors (see Chapter 3). Furthermore, my own internal testing has shown that
as the OOB-ER improves, the quality of the VI rankings improve. With this in
mind, one should interpret VI in conjunction with the OOB error-rate. If the OOB
error-rate, is close to the null value (50%) it is likely that none of the predictors are
associated with the outcome, regardless of the VI scores.

mtry

mtry is the primary tuning parameter and the default recommended value of is√
p where p is the number of predictors. However, in genetic studies, we expect that

the vast majority of the input variables are simply noise. Therefore, if mtry is too
small the chance of selecting an important variable to search over at a given node will
be small.

Dı́az-Uriarte and Alvarez de Andrés [2006] examined mtry values ranging from
√
p

to 13
√
p (it was unclear why they didn’t test mtry = p) and generally found that the

larger the mtry the better. Genuer et al. [2008] noted that mtry is more important
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for VI calculation than for prediction and that with sparse data, mtry= p leads to
greatest stability. In Chapter 2, working with a large SNP dataset (p > 330, 000)
found that mtry values much larger than

√
p were needed. In simulation work, the

OOB error rate and VI measures were fairly similar to mtry values of .1p and p,
indicating that the setting is fairly robust to a sensible choice.

mtry has its greatest impact on the final sparsity of the solution, as larger values
of mtry lead to fewer variables brought into the tree. Moreover, the smaller the mtry
the larger the individual trees. In this way it can be thought of as controlling the
degrees of freedom (df) of the model, with the higher mtry the fewer df used. This
actually presents a slight paradox. As discussed, the purpose of decreasing mtry is
to lower the correlation between trees, and hence allow bagging to reduce variance.
Therefore, we recognize another complicating factor in the variance of RF: reducing
mtry can both decrease the variance via de-correlation and increase the variance via
larger trees and increased model complexity.

For genetic data, where we expect most of the predictors to be noise, this suggests
that we want to find ways to reduce the tree size. While increasing mtry is one means
to do so, this will not be the most effective means and other ways should be sought
(see below).

Number or Trees

Another important consideration is how many trees to grow. This appears to be
a data set dependent factor, where stronger predictors lead to quicker convergence.
Glaser et al. [2007] using a much smaller data set (20 SNPs), grew forests with up
to 5000 trees, and found that after 400 trees, the results were stable. Dı́az-Uriarte
and Alvarez de Andrés examined forest sizes ranging from 1000 to 40,000 and found
no differences in error-rates. While for prediction purposes, few trees are necessary
and the OOB error rate will generally converge rapidly, Genuer et al., noted that
for variable importance more trees will generally lead to refinement and stability in
variable importance.

If the only concern is prediction, one can simply use the OOB error-rate as guide
to determine ntree. For VI this is not the case. Both my simulation and empirical
work suggested that growing forests much larger (2×−3×) the point of stable OOB
error-rate was necessary.

Terminal Node Size

Terminal node size (nsplit) is not an often discussed tuning parameter. The
setting of nsplit tells the algorithm when it should stop splitting the node leaves of
the tree. In CART one grows trees to maximal depth and then prunes nodes using
cross-validation. As mentioned in RF this pruning step is skipped. There are both
computational and theoretical reasons for this. Computationally, pruning is expensive
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and potentially impractical over a forest of trees. Theoretically, though, pruning is
unnecessary. From a bias-variance perspective, the purpose of pruning is to increase
the stability (i.e. lower the variance) at the cost of increased bias. The increased
variance of unpruned trees is due to their tendency to overfit the data. However,
the bagging process, specifically aims to reduce variance (with no cost to bias) and
avoid overfitting making pruning superfluous. In addition Breiman [1996d] showed
that bagging works best with weak base learners, of which unpruned trees are one.

In practice, nsplit is a tuning parameter that has probably not received enough
attention. The primary evaluation of it was by Segal [2004]. As with mtry the
conclusion was that there was often an optimal nsplit though growing trees to maximal
depth did not lead to overfitting. One area, in which, it may be of greater importance
to consider nsplit is in the calculation of proximities (see Section A.4.3).

A.4.2 Modifying the Data

One can also effect the final solution by modifying the input the data.It is im-
portant to note, that once the data is modified the OOB-ER no longer represents an
unbiased estimate of GE [Svetnik et al., 2004].

Correlation

There are two approaches for dealing with this issue: computationally and in
the set-up of the data. Computational approaches are discussed in Section A.3.1. A
second approach, applicable with genetic data, is to pre-process the data based on LD
structure. This was the approach taken in Goldstein et al. [2010]. It was empirically
found that pruning to an LD level of 90% resulted in identifying different interesting
variables and did not seem to degrade PE.

Removing Unimportant Variables and Important Ones

As mentioned, the sparsity of the final model is a function of both mtry and
ntree. It is desirable to remove these sparse results as they likely represent noise and
will simply make finding the optimal solution more challenging. Dı́az-Uriarte and
Alvarez de Andrés outlined a strategy of sequentially removing genes by dropping the
bottom 20% or 50% performing successive runs until there was a noticeable increase in
PE. In Chapter 2, I removed the SNPs with VI = 0. This obviously is not a universal
strategy as not all applications will have VI values of 0. As with Ridge regression,
most variables will have a chance to have at least some importance. Therefore RF is
likely not the best algorithm for removing unimportant variables. For such scenarios,
algorithms that provide a sparser solution should be utilized.

In the application to the MS data I simply removed the SNPs with 0 VI. This
obviously is not a universal strategy as not all applications will have VI values of 0.
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As with Ridge regression, most variables will have a chance to have at least some
importance. Therefore RF is likely not the best algorithm for removing unimportant
variables. For such scenarios, algorithms that provide a sparser solution should be
utilized.

Not only can we consider removing unimportant variables, we can also consider
removing overly strong results. Since RF searches over multiple markers looking at
joint and conditional effects, a strong marker or set of strong markers, could over
shadow weaker yet important effects. The work with the MS showed that after
removing Chr 6p, new variables were found that would not have been found otherwise.
This is an important consideration that has not been discussed elsewhere.

A.4.3 Other Uses of Random Forests

The derived collection of trees provides a significant amount of information about
the complex relationships between predictors and observations. This information can
be exploited for many additional uses including clustering, imputing missing data,
detecting which observations are related (proximities), detecting outliers and graph-
ing. Most of these are detailed on the main website for Random Forests [Breiman
and Cutler, 2010]. Cutler and Stevens [2006] provide an overview of some of these
uses for genetics applications.

While many of these methods are implemented in most versions of RF, few of these
have seen application. Some of these methodologies (e.g. imputing and outlier detec-
tion) are probably better accomplished via other methods that take better advantage
of genetic structure. However, other analyses (e.g. clustering and proximities) do
have the potential to provide insight into the structure of genetic data. However, the
primary aspect limiting their use is the relative weakness of genetic data. Many of
these analyses exploit very subtle relationships in the tree structure. Since genetic
data is often weakly predictive [Clayton, 2009] there is often not enough information
content to accurately define these relationships. However these are methods worthy
of further exploration.

A.4.4 Implementations of Random Forests

To date there are a number of different implementations of RF. Since there is
always potential for implemented algorithms to get lost in translation we make no
statement about each’s accuracy as we have not used all of them. However, each has
slightly different features and may be suitable for different data problems. The original
code was written in Fortran by Leo Breiman and Adele Cutler and is available on their
website [Breiman and Cutler, 2010]. Their code was adapted for use within the R
environment by Andy Liaw and Matthew Wiener in the package randomForest. Other
R packages have been created as either add-ons (e.g. varSelRF) or as amendments of
the RF algorithm (e.g. cforest). The original Fortan code was licensed to Salford
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Systems, and implemented with a GUI and is available for a licensing fee. Numerous
open source versions are available, most geared towards handling large data problems.
Possibly, the most developed is Random Jungle [Schwarz et al., 2010] implemented in
C++ and able to handle GWA data.

A.5 Other Classifiers

One can get insight into an algorithm’s function and utility by comparing it to
other algorithms. We briefly mention three here: K-Nearest Neighbors (K-NN), Pe-
nalized Regression and Boosting.

A.5.1 K-Nearest Neighbors

K-Nearest Neighbors (K-NN) goes back to the 1950s and is one of the simplest
classification algorithms to implement. For simplicity, assume the input vector x0 is
real valued, one calculates

di = ‖xi − x0‖ (A.12)

The K is a tuning parameter that determines how many neighbors to consider, ordered
by di. The classification for x0 is the majority vote of those K. A primary limitation
of K-NN is that it provides little insight into VI.

Lin and Jeon [2006] compared RF to an adaptive form of K-NN. Particularly for
classification, the relationship to K-NN stems from the fact that trees are grown to
maximal depth, where often there will be only one class in the terminal node of a
tree. Therefore over the forest of trees, the classification for a new observation will
be a weighted version of a certain number of neighbors.

A.5.2 Penalized Regression

Penalized regression [Hastie et al., 2009] is an important class of algorithms that
has increased in popularity with improved computational “tricks.” For classification
this is done in the context of logistic regression. The general equation to optimize is:

maxβ0,β

{ N∑
i=1

[yi(β0 + βTxi)− log(1 + eβ0+βT xi)]− λ
p∑
j=1

|Bj|α
}

(A.13)

α is a user set value that controls the type of penalty, while λ is a tuning parameter
to optimize the function. When α = 1 the penalty represents an `1 penalty and
the algorithm is referred to as the LASSO. When α = 2 the penalty represents an
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`2 penalty and the algorithm is the traditional Ridge regression. The Elastic Net
algorithm allows one to vary α between 1 & 2.

λ serves as a tuning parameter that controls the complexity of the model. The
appeal of LASSO over Ridge regression is that the LASSO penalty will result in
a more sparse solution. While the optimal Ridge solution, like RF, will shrink all
coefficients towards 0 with few equal to 0, the optimal LASSO fit will have many
coefficients at 0. This makes the LASSO ideal for variable selection.

The LASSO has been successfully implemented with GWA data [Wu et al., 2009].
The one concern with the LASSO, as opposed to RF, is that the method requires
specifying a parametric linear model. The application by Wu et al. allows for a
search for interaction terms, but it is unclear how successful it is with detecting
complex genetic effects. In this sense tree structures are preferable.

The relationship between RF and Ridge regression stems from variable impor-
tance. Unlike algorithms such as LASSO and Boosting, which tend to produce a
sparse solution, placing weight on only few variables, both RF and Ridge result in
shrunken VI measures, allowing many variables to “speak.” This is desirable when
most variables are associated with the outcome resulting in a more stable solution
with emphasis spread across the variables. However, when association is due only
to correlation (LD) with a true causal variant, this results in what have been called
biased importance scores [Strobl et al., 2007].

A.5.3 Boosting

Boosting has seen a large application in machine learning fields but has had no
known applications to genetic data (a pubmed search of the terms “boosting” and
“SNP” yielded no results). While there is extensive literature on boosting I briefly
mention their appeal as a learner and some thoughts as to why it may not be appro-
priate for genetic data.

Boosting is an ensemble algorithm that like RF has trees as the base learner.
However, unlike RF, these trees are not fully grown trees, often containing only a
few nodes (the number of nodes is a tuning parameter). While the trees in RF
(and bagging) are identically distributed, the trees in boosting are not. Instead
each observation in the training set receives a weight that is updated based on some
classification error (generally an exponential loss), with greater error, resulting in
greater weight. Therefore each iteration of Boosting, attempts to fit the classifier on
those observations which is hardest to classify. By doing this, Boosting is able to
both decrease variance (because of the aggregation of classifiers) and bias (by doing
a better job on those that are miss-classified).

Multiple studies have shown Boosting to be as good as and often better than
bagging and RF [Breiman, 1996a, Dietterich, 2000b, Hastie et al., 2009]. Moreover,
Boosting, has similarities with LASSO, in that it tends to result in a much sparser
solution than does RF.
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However there are two problems with Boosting, one computational and one more
systemic. Due to this bias reduction mechanism, Boosting is prone to over-fitting.
Therefore there needs to be constant CV to determine when to stop growing trees.
Computationally this is very expensive. However, a more systemic problem is that
the performance of Boosting degrades quickly with noisy data, particularly compared
to bagging and randomization procedures [Dietterich, 2000b]. Therefore while a very
attractive algorithm, Boosting is not entirely appropriate for genetic data which con-
tains large samples and many irrelevant variables.

A.6 Conclusion

This appendix walked through the theoretical background of RF, while highlight-
ing some relevant research. While in many ways a black box algorithm, in can also
easily be broken down into its components: classification, trees, bagging & random-
ization. Understanding how an algorithm works, particularly the components that
control the bias and variance, allows the user to better control the output via the
different tuning parameters.

Having worked with RF, I agree with Brieman that it is a great “off-the-shelf”
algorithm. While working with genetic data presents particular challenges, using
default settings will generate somewhat reasonable results (though ideal settings ex-
ist). The underlying algorithm is relatively fast making it capable of handling large
Genome Wide Association studies. The tree structure is well suited for genetic data
since it is non-parametric and allows for the existence of conditional and higher order
effects.

The simplicity of the RF algorithm makes it well suited for advanced users to
manipulate it to suit their own data needs. The two VI measures discussed are only
the standard and most general VI forms, but it is easy to conceive of specific VI
measures for particular data problems. For example, it would be relatively straight
forward to construct an analogous pVI looking at two variables. Moreover, this
exposition barely touches on the many subtle questions one can ask after fitting
RF. Within the collection of trees there is a lot of information about the relationship
between the variables and observations allowing one to explore clustering, proximities
and visualization. Experience has shown that these more subtle relationships can only
be gleamed when the overall predictor is fairly strong. we That being said, I also have
to agree with critics of RF that it is not a perfect algorithm. The VI measure that
it produces are inherently ad-hoc and lacks any statistical properties (some work
has been attempted to gleam some statistical properties but so far none have been
determined). The lack of sparsity makes it ill suited for variable selection. Also, there
is a tendency, particularly when the data is not very predictive for the predictions
generated from RF to be highly shrunk to the mean.

As the “No Free Lunch” states, there is no perfect algorithm [Wolpert, 1996]. As
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with all modeling situations it is important to find the right tool for the job. For large
genetic data, RF can be the right tool, though it is does need to be used appropriately
and with insight.
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