Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

β-Catenin–dependent lysosomal targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in apoptosis-resistant colon cancer cells

Abstract

The Wnt/β-catenin pathway is constitutively activated in more than 90% of human colorectal cancer. Activated β-catenin stimulates cell proliferation and survival, however, its antiapoptotic mechanisms are not fully understood. We show here that activated β-catenin is required to suppress caspase-8 activation, but only in colon cancer cells that are resistant to tumor necrosis factor-α (TNF)-induced apoptosis. We found that lysosomal delivery of internalized TNF occurred at a faster pace in apoptosis-resistant than in apoptosis-sensitive colon cancer cells. Retardation of endosomal trafficking through vacuolar ATPase (V-ATPase) inhibition enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive cells. Interestingly, knockdown of β-catenin also prolonged TNF association with the early endosome and enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive colon cancer cells. In a mouse model of inflammation-associated colon tumors, we found nuclear expression of β-catenin, resistance to TNF-induced apoptosis, and reactivation of apoptosis in vivo after cotreatment of TNF with a V-ATPase inhibitor. Together these results suggest that activated β-catenin can facilitate endosomal trafficking of internalized TNF to suppress caspase-8 activation in colon cancer cells.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View