Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Photochemistry of aldehyde clusters: cross-molecular versus unimolecular reaction dynamics

Abstract

The unimolecular photochemistry of aldehydes has been extensively studied, both experimentally and computationally. However, less is known about the role of cross-molecular photochemical processes in the condensed-phase photolysis of aldehydes. The triplet-state photochemistry of pentanal in its pentameric (n = 5) cluster was investigated as a model for photochemical reactions of aliphatic aldehydes in atmospheric aerosols. This study employs "on the fly" dynamics simulations using a semi-empirical MRCI electronic code for the singlet and triplet states involved. Previous studies have shown that the triplet-state photochemistry of an isolated pentanal molecule is dominated by Norrish I and II reactions. The main findings for the cluster are: (1) 55% of the trajectories lead to a unimolecular or cross-molecular reaction within a timescale of 100 ps; (2) cross-molecular reactions occur in over 70% of the reactive trajectories; (3) the main cross-molecular processes involve an H-atom transfer from the CHO group of the excited pentanal to an O atom of a nearby pentanal; and (4) the unimolecular Norrish II reaction is suppressed by the cluster environment. The predictions are qualitatively supported by experimental results on the condensed-phase photolysis of an aliphatic aldehyde, undecanal. The computational approach should be useful for predicting the mechanisms of other condensed-phase organic photochemical reactions. These results demonstrate a major role of cross-molecular processes in the condensed-phase photolysis of carbonyls. The cross-molecular reactions discussed in this work are relevant to photolysis-driven processes in atmospheric organic aerosols. It is expected that the condensed-phase environment of an organic aerosol particle should support a multitude of similar cross-molecular photochemical processes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View