Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Cutaneous T-Cell Lymphoma PDX Drug Screening Platform Identifies Cooperation between Inhibitions of PI3Kα/δ and HDAC

Abstract

Cutaneous T-cell lymphoma is a form of non-Hodgkin lymphoma that manifests initially in the skin and disseminates systemically as the disease progresses. Mycosis fungoides and Sézary syndrome are the most common subtypes of cutaneous T-cell lymphoma. Advanced mycosis fungoides and Sézary syndrome are life threatening with few treatment options. We searched for new agents by high-throughput screening of selected targeted compounds and identified high-value targets, including phosphatidylinositol 3-kinase (PI3K) and cyclin-dependent kinases. To validate these hits from the screen, we developed patient-derived xenograft mouse models that recapitulated the cardinal features of mycosis fungoides and Sézary syndrome and maintained histologic and molecular characteristics of their clinical counterparts. Importantly, we established a blood-based biomarker assay using tumor cell-free DNA to measure systemic tumor burden longitudinally in living mice during drug therapy. A PI3K inhibitor, BKM120, was tested in our patient-derived xenograft model leading to disease attenuation and prolonged survival. Isoform-specific small interfering RNA knockdowns and isoform-selective PI3K inhibitors identified PI3K-δ as required for tumor proliferation. Additional studies showed a synergistic combination of PI3K-α/δ inhibitors with histone deacetylase inhibitors. The strong preclinical efficacy of this potent combination against multiple patient-derived xenograft models makes it an excellent candidate for further clinical development.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View