Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

How Brine Composition Affects Fly Ash Reactions: The Influence of (Cat-, An-)ion Type

Abstract

Hypersaline brines can be solidified and stabilized via the hydraulic and pozzolanic reactions between fly ash(es) and calcium-based additives. Although recent work has examined fly ash reactivity in single-salt ("simple") hypersaline brines (ionic strength, Im > 1 mol/L), the effects of mixed-salt solutions on fly ash reactivity remain unclear. Herein, the reactivity of a Class C (calcium oxide [CaO]-rich) or Class F (CaO-poor) fly ash mixture with calcium hydroxide is reacted in solutions bearing sodium chloride (NaCl), calcium chloride (CaCl2), magnesium chloride (MgCl2), sodium sulfate (Na2SO4), or combinations thereof for 1.5 ≤ Im ≤ 2.25 mol/L, from 1 week until 24 weeks. Expectedly, sulfate anions promote the formation of sulfate phases (i.e., ettringite, monosulfoaluminate, U-phase), while chloride anions induce the formation of Cl-AFm compounds (i.e., Kuzel's and Friedel's salt). Although the Class C fly ash's reactivity is similar across different anions (for a fixed cation and Im), Class F fly ash shows a small change in reactivity depending on the anion present. NaCl suppresses (Class C and Class F) fly ash reactivity by up to 30 % as compared to neat CaCl2 and MgCl2-based brines. Thermodynamic modeling reveals that NaCl induces a considerable increase in pH-up to 13.7, where many hydrated phases of interest cease to be the major phase expected-as compared to CaCl2 and MgCl2 brines (pH < 13). In mixed-salt brines, anion immobilization is competitive: Sulfate achieves a greater level of incorporation into the hydrates, as compared to chloride. These results offer new understanding of how the brine composition affects solidification and stabilization and thereby yield new insight into improved approaches for wastewater disposal.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View