- Main
Semi-parametric estimation of the autoregressive parameter in non-Gaussian Ornstein–Uhlenbeck processes
Published Web Location
https://doi.org/10.1080/03610918.2018.1468456Abstract
This paper considers the problem of estimating the autoregressive parameter in discretely observed Ornstein–Uhlenbeck processes. Two consistent estimators are proposed: one obtained by maximizing a kernel-based likelihood function, and another by minimizing a Kolmogorov-type distance from independence. After establishing the consistency of these estimators, their finite-sample performance and possible normality in large samples, is investigated by means of extensive simulations. An illustrative example to credit rating is discussed.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-