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PREFACE

The Nuclear Dynamics Workshop again proved to be an excellent
medium for the presentation and exchange of ideas focusing on a close
interaction between theoretical calculations and experimental results.
The workshop format enabled the participants to gather informally for
man, lively discussions, and, as usual, the proceedings tell only half
the story. Some of the controversial issues raised at this meeting
involved Pauli blocking; a "soggy saddle" model intended to shore up
weaknesses of the statistical model; the concept and definition of
central collisions; and the amount of deviation from energy conserva-
tion a model can be allowed.

The organizers wish to thank Susan Ovuka and Loretta Lizama of TID
for their respective work in the advance planning of the conference and
;he editing of the proceedings. All of us connected with the conference
also wish to thank the management and staff of Granlibakken, whose mix-
ture of friendlinmess and professionalism allowed the workshop to run

smoothly and pleasantly.

Jeannette Mahoney

Conference Coordinator



PROGRAM
Page

Monday, February 22, 1982

Morning Session
W.J. Swiatecki, 'The Nature of Nuclear Dynamics" . . . . . . . . 1
C-Y. Wong, "The Viscoelastic Properties of the Nucleus" . . . . 12

R. Hasse, "Long-Mean-Free-Path Nuclear Fluid Dynamics to
All Orders in the Moments"” . . . . . . v ¢ o « o « o 17

P, Shuck, "A Boltzmann Equation Approach to the Damping
of Zero Sound Modes in Nuclei . « « v o o o = o » o 23%

Evening Session

H. Feldmeier, "Dissipation and Fluctuation Caused by
Statistical Exchange of Particles" . ... . . . 31

M. Dworzecka, "The 'Wall Formuia' for Nuclear Dissipation
as Classical Limit of the Damping of Col-
lective Motion in the Time-Dependent RPA" . . . . 40

H. Sann, "Dynamics of the Fusion Process Pb+Mg-Ni" . . . . . . . ==

Tuesday, February 23, 1982

Morning Session

V. Viola, "Linear Momentum Transfer in Nucleus-Nucleus
Collisions” . o v ¢ ¢ v o v e v e s e o s s s s . . . 45

T. Awes, "Pre~Equilibrium Light Particle Emission in
O-Induced Reactions” . . . « + ¢ & ¢« s o s o v . . . 50

J, Natowitz, "Fragmentation at 20 to 43 MeV/n" . . . . « « « + . 56

F, Plasil, "Heavy-Ion-Induced Fission in the Rare Earth
Region and the Statistical Model” . . .. . ... . 61

*No talk given; written contribution only.
*No written contribution.



Tuesday, February 23, 1982

Fvening Session
S. Shlomo, "Pauli Blocking in Finite Nuclei" . . . . « . « +» « » 67

L, Moretto, "Pre-Fission Neutrons: A Major Failure
of the Statistical Model" . . . . . . . ¢ s « ¢« ¢+ s ==

A. Mignerey, "Masa and Charge Distributions in the
Reactions of %0ca and 2098i with 3cp” . . . . .. 70

Wednesday, February 24, 1982

Morning Session

K. Frankel, "Deuteron Production in High Energy
Heavy Ion Collisions" . . . . ¢ ¢ o v o s ¢ o s o » 74

K. Frankel, "Flow of Nuclear Matter in Heavy Ion
Collisions™ « v o o o o s o 2 o s o o « o s o o o » 80O

J. Harris, "Analysis of Relativistic Heavy Ion
Collisions Using Collective Variables" . . . . . . . -3

J. Randrup, "Complete Events in Medium-Energy
Nuclear Collisions” . « & v 4 4 ¢« & o ¢ ¢« s ¢« « « . 84

C-Y. Wong, "Particle Production in High-Energy,
Heavy-Ion Reactions" . . . . . . . « v v s o« o . . . 88*

Evening Session

P. Danielewicz, "Quantum Description of the Heavy-Ion
Collision Process" . . . &« ¢« s ¢« o ¢« o o « « . 93

J. Griffin, "A Physically Asymptotic Hartree-Fock
Stationary Phase Approximant to the
Many Body S Matrix" . . . . . 4 v ¢« ¢ b o v 0 o o . 99

E. Bartnik, "Friction and Diffusion in
Feynman's Path Integral Method" . . .. . . . . . 102%

B. Grammaticos, "RHI and TDHF: The Evolution of
the Target" . &+ « v ¢ ¢ o v « o « o s « » o o o 105%

*published as LBL-13880; talk also published in tke Proceedings of
the Nuclear Excitations Workshop, Hirschegg, Rleinwalsertal, Austria,
January 18-23, 1982,

*No talk given; written contribution only,

Tpublished as LBL-14255.



vii

Thursday, February 25, 1982

Morning Sesasion Only

A. Warwick, "Target Fragment Production Mechanisms
in Relativistic Nuclear Collisions” . . . .

H. Wieman, "Multiplicities of Slow Target Fragments in
Relativistic Heavy Ion Collisions” . . . . .

H. Ritter, "First Fxperiments with the Plastic Ball"™ . .

Friday, February 26, 1982

Morning Session Only

P. Hecking, "Pion Production from Heavy-Ion Collisions
at 80-400 MeV/n" . « v ¢ v v 4 0 o . a0

A. Klar, "Density Fluctuatinns in Nuclei: Consequences
for Relativistic Heavy-Ion Collisions" . . . .

K-H. Muller, "Subthreshold K~ Production by Coherently
Produced ¢-Meson in Nuclear Colilisions™ .

List of Participants « « o« « o = o « o o o o » o o o o &

116

124

135

139



THE NATURE GF NUCLEAR DINAMICS™

W. .J. SWIATECKI
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Several important advances in the description of nuclear dynamics
have taken place in the past few ysars., There are the TDHF calculations,
including recent attempts to treat residual interactions, statistical
Master Equation approaches and equations of motion with dissipation.

To me, one of the clarifying messages, which is coming through the mul-
titude of different approaches that have been taken, is the following:
“'"The nature of nuclear dynamics is dominated by the

presence or absence of symmetries."

I have prepared a transparency in which I try to put together a
number of insights into the nature of nuclear statics and ruclear
dynamics and in which the presence or absence of symmetries plays a
dominant role.

I will explain the word "Plastodynamics" in the title of the
transparency (Fig. 1) at the end of my talk.

The transparency is in two parts, the upper referring to statics,
the lower to dynamics. In each part I have isovlated two limiting cases:
The "Chaotic Regime" at the top and the "Ordered Regime” at the bottom,
with a Transitional Regime in between. The Ordered Regime is further
subdivided into cases corresponding to Fast and Slow deformations.
*This work was supported by the Director, Office of Energy Research,
Division of NMuclear Physics of the Office of High Energy and Nuclear

Physics of the U.S. Department of Energy under Contract No.
DE-AC03~76SF00098.



The Chaotic Regime corresponds to the limiting case in which there
are no degeneracies in the single~particle spectrum of the system.
Insofar as degeneracies are associated with symmetries, this implies
an absence of symmetries.

The Ordered Regime is the limiting case dominated by symmetries of
various kinds, leading to strong degeneracies in the single-particle
spectrum. {This is actually the more familiar situation on which, for
two reasons, & lot of stress has been lajid in the past. First, nuclei
in their ground states usually seek out symmetric configuratioms in
order to make use of the extra stability associated with a completely
filled set of degenerate levels. Second, we only know how to solve
the Schrodinger equation analytically in simple situations, character-
ized by a high degree of symmetry.)

A typical example of a situation dominated by symmetries is the
famous Hill-Wheeler Box —-zn infinitely deep, sharp, box-like potential
well, filled with eigenfunctions given by products of three sinec:
sink x * sinkyy * sink,z. (Refs. (1), (2).) 1t is a prototype of an
independent-particle model of a nuclear system. If ycu £ill the Hill-
Wheeler potential well with A particles up to a Fermi energy EF’ and
then plot the total energy,

V= :E: ei,

i=1

against a volume-preserving stretching deformation I+a, you find a
result shown in the middle of the transparency. (The longitudinal
dimension ie stretched by a factor 14, the transverse dimensions

are compressed by a factor 1+%a.) Each steep, parabola-like curve

is the energy Eai corresponding to the case when the particles stay



in their original orbitals and the wavelengths are simply stretched in
one dimension and compressed in the other, following the deformation of
the box. In other words, the nodal structure of each wave function is
frozen. The energy for such a constrained deformation rises very
steeply and soon exceeds the energy corresponding to the optimum redis-
tribution of particles into the lowest orbitals at the given deformation.
The energy corresponding to this optimum redistribution is given by a
rippled curve consisting of the bottom pieces of many separate parabolas.
The envelope of the parabolas represents the ground-state energy of the
system pretty well, except for magic number situations. For example,

in the case of the Hill-Wheeler box, A = 60 is a magic number for the
cube, Thus the parabola centered at @ = 0 is anomalously low if A = 60.
(See Ref. (2)).

Note that at each deformation there are many parabolas (the dif-
ferent excited states of the total system) and that there are many
crossings between them. Such crossings of the energy levels of a
system are possible, in general, only because of the symmetries pre-
sent. (The reflection symmetries in the case of the box).

Suppose now we go over to the Chaotic Regime by putting in dents
and corrugations in the sides of the box in order to break down the
symmetries. The enerpgy spectrum of the system is now shown in the
upper picture in the transparency. The ground-state energy as a fumc-—
tion of shape is not very different from what it was before (except
that the special stability of the unstretched shape with o = 0 has been
destroyed). But the excited states are now not allowed to cross and
each will be a (somewhat ripply?) curve with a trend more or less like

the ground state.



If you look at these two plots of Eei against deformation, you
realize that there are two characteristic stiffnesses in the problem
of stretching a prototype nuclear system: the stiff curvature of each
parabola, and the soft curvature of the ground-state envelope. The
stiff curvature is made up «f A contributions, each associated with
atretching and squeezing the separate wave functions. The total is
proportional to the number of particles in the system and has, there-

fore, the properties of a coefficient of elasticity of a solid body.

It can also be readily shown that the second, soft curvature is propor-
tional to the area of the system and has, therefore, the characteristics
of a surface-energy coefficient of a fluid.

The elastic stiffness coefficient for stretching (i.e., quadrupole

type) distortions turns out to have a beautifully simple form, viz

V(@) = V_ + (eoeff) o, (0
where coeff =V = G%EF)A = Total Energy! (2)

The surface~energy coefficient Y can also be calculated and the result

can be written as
1/3
2 3n {3 (3)
411‘1.‘0 Y = —40 (F) Ep ,

where L the radius constant, is related to the density of particles.
The actual numerical value of Y, as given by eq. (3), is unimportant,
since an infinitely steep wall is not a realistic representation of a
nuclear surface. The important result is that the stiffness is propor-
tional to the surface area. Thus the ground-state energy in the Chaotic

Regime, and the average trend of the ground state in the Ordered Regime,



both follow the potential energy of a fluid with surface tension. On

the other hand, for fast deformations in the Ordered Regime (when the
nodal structures remain frozen) and for magic nuclei, the systen acts
like an elastic solid. Thus, in the Ordered Regime,the elastic response

to stretching is given by Eq. (1) and in the Chaotic Regime by
V() = L.D. = -cl(Volume) + cz(Area) + corrections. (4)

The nuclear potential-energy problem is fairly well understood and
what 1 described has been known for many years. It has alsv been known
for some time that one can do a fair job of describing phenomerological-
ly the Transitional Regime in the potential erergy by simply multiplying
the shell-effect (i.e. the deviation from the Liquid Drop energy,

Eq. (4)) by a damping factor

or

2

(1-26% &%, )

where 8 is a measure of the deformation from a symmetric, magic number
configuration. (Refs. (2}, (3)).

Tn the case of dynamics, the situation is much less clear. 1In
the lower part of the transparency (Fig. 1) I have, nevertheless, made
an attempt to order some of the simplest insights in a pattern paral-
leling the discussion o7 the statics.

First, in the Chaotic Regime, where there are no symmetries or
regularities and the particle motions may be assumed to be randomized,

there ought to be some simple limiting form of the dynamics of a large



leptodermous., dolichohodous system, Lased on statistical, phase-space
considerations. It seems fairly certain to me that this linit is re-
prcsented by combining the Liquid Drop potential energy with the Wall
Tormula for dissipation and disregarding inertial effects, which appear
to be small compared to the dissipation. The result is an astoaishing-
ly simple equation of motion for the time evolution of a nuclear shape
(Refs. (&), (5), (6)):

j—:=§—‘7 D)
Here dn/dt is the rate of normal displacement of a point on the surface,
P is the excess pressure at that poirt due to the conservative forces
(surface tension and electric) and oV is = characteristic constant of
the one-body dissipation theory (the product of the mass demsity of the

2 MeV sec fnr4 for a

system and the mean particle speed, about 1 x 10
nucleus). Fquation (7) is, I believe, the dynamical counterpart of the
Liquid Drop potential-energy equation of nuclear starics.

By way of contrast, in the dynamice of the Ordered Regime one hnas
a more complicated situation, Jith ail the crossing parabola-like energy
levels, The discussion of this regime has centered since the work of
Hill and Wheeler on estimating the probability flow at such crossings
or near-crossings. There are the two limiting cases of adiabatic
(slow) and diabatic (fast) motion (see, for example, Ref. (7)), where
you either stay on the lowest soft envelope level or on one of the
stiff parabolas with frozen nodal structure. The introduction of a
“friction kernel” seems a natural way to span the two 1imits and re-
cently Norerberg has studied z particularly simple equation of motion

with such a friction kernel. (Ref. (8)). It is shown in the lower



part of Fig. 1. The friction kernel, with a characteristic amplitude
a and a characteristic memory time T, collects information about the
speed of the deformation, do/dt, from t = o te t = t, and the force
constructed in this way is balanced against an intertial force, propor-
tional to dza/dcz. You may easily verify that if the memory is short
compared to characteristic dynamical times (i.e. if the motion is
slow) the equation reduces to azdamped motion. If the motion is fast,
the equation reduces to the harmonic oscillator equation. In this
limit the system is oscillating up and down one of the stiff elastic
parabolas, with the eiasiicity coefficient given by Vo. It is note-
worthy that if this elastieity is combined with an inertia of irrota-
tional flow one gets a resonance frequency for stretching vibrations

(as given by Bertsch or Nix & Sierk, see Ref., (9)):

1/3 2 -1/3 -1/3
e = “J’lL_ __"2. A =647 A  Mev,
mro

where m is the nuclear mass unit, 931.5 MeV. This is in good agreement
with observed giant quadrupole oscillations. (It appears that, in ef-
fect, the Bertsch-Nix-Sierk interpretation of the giant resomances is
equivalent to treating each volume element of the nucleus as a little
Hill-Wheeler box, oscillating elastically with effectively frozen nodal
structure.)

If mv assignment of the giant resonances to the Ordered Regime,
and of the wall formula dynamics to the Chaotic Regime is correct, then
the analogy with the statics suggests looking for a phenomznological

theory encompassing both limits., Could we do that by inserting some-



where a factor e.92’ telling the system about ite proximity to a magic,
highly symmetric configuration?

Perhaps my transparency may stimulate some attempts in this di-
rection. In any case, I hope that it has helped to bring out the rela-
tion between the giant-resonance dynamics and the wall formula dynamics
and that it will discourage conclusions along the lines that, if cne
is confirmed experimentally, the other must be wrong. They each have
a place in the appropriate regime of shapes and motions. What the
quantitative range of validity is for each regime, is a question not
easy to answer from first principles, and we will have to rely heavily
on experimental findings and further studies of the Transitionzl Regime.

It seems clear that we are still a long may from being able to
describe quantitatively all the different aspects of nuclear macroscopic
dynamics. But I am beginning to have the feeling that we are getting
close to a qualitative understanding of how it will probably all come
out. The framework needed to support the richness of nuclear dynamics
will have to include the description of fluids (ordinary, superfluid
and superviscid), as well as the elastic vibrations of solids and, per-
haps, their plastic flow. 1In this connection I would like to finish
with a paragraph from a note by Georg Sussmann, entitled "On the con-
tinuity between the solid and the liquid stats." The note was written
in Berkeley in 1973 and remains, I believe, unpublished. In the intro-
duction Sussmann says:

"According to our usual experience there is a rather clear cut
distinction between solids and liquids. The vast majority of condensed
materials is, under normal conditions, either shape preserving and thus
in a solid state, or quickly fluid and thus in 2 ligquid state. ¢This
fact is stressed by the remarkable discontinuity known as melting which
seems to extend to very high pressures and temperatures.) Of course,

we know of counter examples 75 tar or (silly) putty, but they are rare
and show # rather complicated behavior., There are two phenomena that



bridge the gap between the solids and the fluids: viscosity tends to
make a fluid somehow like a solid, whereas relaxation tends to make a
solid somchow like a fluid. In the following we will give a short ac—
count of these concepts which interpolate between elastodynamics and
hydrodynamics in the much broader frame of plastodynamics.”

I believe that, in addition to first-principles numerical studies
on the lines of TDHF with residual interactiomns, it will be useful to
develop a phenomenological theory of nuclear dynamics. In this endeavor
the mathematical structure of Sissmann's plastodynamics should be a

useful background.
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HOW DOES IT ALL FIT TOGETHER?
PLASTODYNAMICS OF DOLICHOHODOUS SYSTEMS
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Fig. 1. An attempt to sketch the relation to each other of various limit-
ing theories of nuclear statics and nuclear dynamics. The principal
message is that the description of macroscopic nuclear dynamics may be
expected to call for a rich mathematical structure, including the theory
of fluids (ordinary, superfluid and superviscid) of elastic solids and
of plastic flow, depenuing on the presence or absence of syrmetries and
regularities in the configurations and deformations in question.
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THE VISCOELASTIC PROPERTIES OF THE NUCLEUS

Cheuk-Yin Wong
Oak Ridge National Laboratory™
Oak Ridge, TN 37830

and

Nestor Azziz
University of Puerto Rico
Mayaguez, Puerto Rico 00708

Abstract

The Maxwell solid, which has a short-time elastic behavior and a long-time
viscous behavior, cannot properly describe the viscoelastic properties of the
nuclear fluid in its ground state. The Voigt solid, which exhibits asymp-
totically an elastic behavior. is a good model for the nuclear fluid in its
ground state.

* kK %

Recently, in the discussion of nuclear collective motion, nuclear giant
resonances were successfully described as elastic vibrations of a nucleus,-*
although alternative descriptions were also presented.5:6 In this elastic
model, the widths of the giant resonances provide information on the visco-
elastic properties of the nuclear fluid and are therefore of great interest.

Previously, in our study of the damping of the giant resonances, it was
assumed that the stress tensor originates from both the elastic response and the
viscous dissipation.2 The stress tensor pij is then the sum of the elastic
styess ;ensor and the viscous stress tensor, as in the dissipation of ordinary
solids:

Sk b
pij = - 3;} + 3X1 - AéijV-

(1)
aui Egi 2 -+ +
-n\ax; faw, CF 8yvhu) - e
j i
where § is the displacement field, U= % is the velocity field, X and u are the

Lamé constants and n and ¢ are the viscosity coefficients. Perturbative treat-
ments led to reasonable agreement with experiment and the determination of the

*Operated by the Union Carbide Corporation under contract W-7405-eng-26 for the
Division of Basic Energy Sciences, U.S. Department of Energy.
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viscosity coefficients. Of particular interest is the result that for such a
viscoelastic model of the nuclear fluid, the widths of the resonances are pro-
portional to the second power of the resonance energy, in approximate agreement
with experimental observations.

The viscoelastic property of a medium consists of a specification relating
the stress tensor pjj with the strain tensor 3Dj/dxj + 3Dj/axj. Equation (1) is
only one of the many possible relationships and represents a class of elastic
media known as the Voigt (model) solid® which exhibits asymptotically an elastic
behavior. There is a different class of media known as the Maxwell solids,”s8»9
in which the relationship between the stress and the strain is different. Many
polymers such as resin are Maxwell solids. They exhibit a short-time elastic
behavior but a long-time viscous behavior. There are also media which can be
represented by a combination of the Voigt solid elements and the Maxwell solid
elements.

We would like to examine the consequences of the nuclear fluid as a Maxwell
5011d to see whether a description in terms of a Maxwell solid is also consis-
tent with experimental data. In a Maxwell solid, the stress pjj is related to
the strain by7-9

U, .
(%. %’%f)pii - _(5;% + 5;%) for i # j, (2)
] § i
and
3
1., 1 ] ) 1 3 _
=)= piy = Vel (3)
(C Y+ %‘u 3t/ 3 jop 1

We shall adopt the perturbative approach and examine small deviations from
elastic vibrations due to the presence of viscosity. In this approach, the time
dependence of pjj and Dy in Egs. (2) and (3) is approximately given by

i t

e % where oy is the frequency of the unperturbed oscillation. Thus, we have
Pij = -u‘(aDi/axi + BDj/axi) for i# j, (8)
ard
13 c e 2.0 0B
3.l Py =B e 3w} wb, (s)
i=1
where

(6}

-

A .
1- Tu/mon’

and
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A+§-u

A%+ % e —, n
1-i(x+% u)/tuOK
The equation of motion is
22d
Sz 7 LOpy = (on)u(ed) + o B (8)
with the solution
B(t) = [Adi(P) + Aca(F) + AaB(F)]e™" (9)

where, as given by Lamb,10,23, is a compressional and irrotational displacement
andjz and(,33 are isovolumetric and rotational displacements.

For a solution which consists of a,,'bl-t_ype displacement, the effect of
viscosity is to change the frequency from ay to

i [(* +% U)Z + %i] (10)

@=uyt Z(A+2u) [ n

which corresponds to a width of

2
A % 2
r f [E_:%u) +?—u—]. (11)

Tz 3 n

Similarly, for aaﬁz— or}a-displacement, the shear viscosity changes the
frequency from ¥y to

P +é_ (12)

(13)
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We can compare the experimental giant resonance widths with Eqs. (11) and
(13). The isoscalar monopole resonance involves only compressional flows repre-

sented by a;§‘-type displacement. So, the widths of the monopole resonance are
given by Eq. tll) for a Maxwell solid. On the other hand, even though the
isoscalar giant quadrupo]e and octupole resonances involve both a.31- and a523—
displacement, the flow is mainly incompressible. It is reasonable to treat

these modes as a purely 1ncompress1ble,3§-d15p1acement in evaluating the effects
of damping. The widths of the 2* and 3~ isoscalar resonances can then be esti-
mated by Eg. (13).

When the comparison with experimental data is made, we find that Egs. (11)
and (13) cannot agree with the experimental data, as they give widths which are
independent of the resonance energies and are the same for quadrupole and octu-
pole resonances. In contrast, experimental data show that the widths for the
octupole resonances_are about twice that of the quadrupole resonances and the
widths for 2* and 3~ decrease with increasing mass numbers. Tha isoscalar giant
resonances do not appear to behave like a Maxwell solid! They behave more like
a Voigt solid as shown previously.2

How do we understand the viscoelastic properties of the nuclear fluid in
light of the above results? Here, we shall discuss only the viscosity prover-
ties and nct the e]ast1c ?roperties {which are found to have their origin in the
quantum stress tensor).2 The Voigt solid is asymptotically (in time) an
elastic solid. The presence of viscosity is only to retard the realization of
its elastic properties. The Maxwell solid is asymptotically a very viscous
fluid but has a short-time elastic behavior. It is well known that a normal
Fermi liquid at low temperatures is very viscous,!? as the mean-free path is
very large. It appears that the Maxwell solid may be a good model for the
nuclear fluid. However, this need not be true at very low temperatures. Below
a critical temperature of a few MeV, the pairing interaction leads to a
superf1u1d condensate and the viscosity can become very small.l3 It is thus not
surprising that the Voigt solid, whick is essentially an elastic solid, is suc-
cessful in describing the widths ¢f the isoscalar giant resonances near the
ground states. The Maxwell solid, which is essentially a very viscous fluid
with a short-time elastic behavior, cannot describe the nuclear fluid at T ~ 0.
The situation may change as the temperature increases. Above the critical tem-
perature of a few MeV,there may be a phase transition in which the nuclear fluid
changes from a superfluid to a normal Fermi fluid with large shear viscosity
coefficients for which a Maxwell solid may perhaps be a better description.
Investigation of the widths of the giant resonances for a nucleus at a high
temperature, as may be found in heavy-ion collisions, will be of interest in
mapping out such a transition.

The authors would 1like to thank Dr. R. Hasse for critical comments and help-
ful discussions.
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LONG-MEAN-FREE~PATH NUCLEAR FLUID DYNAMICS TO ALL ORDERS IN THE MOMENTS™

Rainer W, Hasse
Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France

and

Gautam Ghosh
Sektion Physik, Universitit Minchen, Garching, Germany

After the first derivation of elastic forces in vibrating nuclei from
the RPA-equations by Bertsch! the subject of semiclassical models of isoscalar
giant resonanceshas gained widespread attention. Holzwarth and Eckartz, Yong
et al.3, Nix and Sierk4 then derived the same properties by employing the
dynamical Thomas-Fermi approximation, the Madelung-Bohm quantum potential, or
the collisionless Vlasov equation, respectively. In order to solve the fluid
dynamical equationsfor the isoscalar giant resonance frequencies, these authors
either used no approximation, or a sharp density, or a sharp density and
potential flow, respectively, but all authors truncated the Euler or dynamical
Thomas-Fermi equations after the pressure temsor, i.e. after the second
moments. Later on, starting with the many-particle Schrddinger equationm,
Winter” derived a full set of fluid dynamical equations to all moments but did
not solve for them. Simultaneously, Yukawa and Holzwarth® also put forward a
similar set of equations based on Llandau's theory of Fermi liquids, cf. refs. 7
and solved for the dispersion relations.

In previous papers8, we therefore adopted Winter's scheme and solved for
the isoscalar giant resonance energies including effects of the third and
fourth moments and found large enhancements up to 40 7 of the electric surface
vibrational modes 2+, 37, 4*... 1In these papers we concluded that moment
expansionsconverge very slowly by the fact that the expansion parameter is of
order unity.

In this paper, we propose a new scheme based on a moment expansion of the
collisionless Vlasov equation whlch we are able to sum up to all orders and to
solve for the eigenmodes. Let f(Z, v t) be the Boltzmann distribution function
and F(r) be an external force, then in the limit of a large mean free path the
collisionless Vlasov or Boltzmann equation reads

-a-£+v-a—f—+F°‘(x) ai=o m
ot & 93ty m v, )

By multiplying eq. (1) with powers of the particle veloc1ty components and using
the density p, fluid dynamical velocity u, pressure tensor P and higher moments

Plj...n according to

* Bupported by Deutsche Forschungsgemeinschaft.
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p=m J £ d3v

3
pui =m J‘f vid v
- ) - ~ 3
g =) £y mup - ugd
= - - a3
Pij_‘_n =m ff(vi ui)(vj uj)...(vn un)d v o, (2)

we obtain the following set of equationms.

du
1
- qwp' = p 2 (3a)
: ° 3xa
F.
. 1 3 1 3
- iy, = — _— P, - —= b
1 Oo ax(l 1 m )
. 1 ? ™ 4 o q
-jw pPy.= =— [Pl >, .
* ST !_ ]]Q+{P1] UG}IJGJI c)
. 1 3 1 1 (e} 3 1
- P,., = = . -— v e T
w ijk Bxa P1Jka % {PIJ Bxa Pka}ijk 4
PP B T I o
e ’_Pijk,?;a+{.Pijk£L°‘Jijk£a} el
. 1 3 1 1 (e} 9 1
- iw P, = = Pl -~ — P, °p £
ijkim axa ijkimo N [ ijke Bxa mo 15kim )

Here we treated the harmonic vibration with frequency w as a small perturbation,
f=f£+ f], as well as the density and moments, and linearized the results.
The symbol {""'}ﬁ ...p denotes symmetrization by cyclic permutation of the
indices. The higher momént equations are easily written down by adding the
apptropriate number of indices. The zero order quaitities are evaluated with £°
being the zero temperature Fermi distriburion, i.e. a step function up to the

Frrmi velocity VF,

_4_ 3 _1_ 2
P =3 m Vp » Py S5 P VF
P? . 3 2v
1.1, .1 T et DV §. . . (4)
172 2V (2v+3) 1! o F 1112"'12v N

where 5i1i2 . is the totally symmetric Kronecker symbol which consists
of (2v-))1) different terms, each being the product of v Kronecker symbols
with two indices.

In ref.B the fluid dynamical equations for @ were obtained in treating
the set (3) as an expansion in I/iw , i.e. neglecting the first terms on the
r.h.s. of eqs. (3c,e), truncating after eq. (3e) and inserting the remaining
equations into each other. Here we solve eq. (3b) for aPiQ/Dxa and insert it
in the odd equations (3d, f...). Subsequent insertion of a higher equation into



19

a lower one for the 2n-th truncation simply gives

20 s a2n
Gy o \v; - 55 ) = T o TR, {76, ... a2n“i

i 2nf 71 .
101...02n
n-1 32\)
A el L s
v=] X ... 93X M2y miw Jia, ... "
@, %y, 1 2v

For the time being we do not consider external forces nor self-consistent
potentials which, actually, should be employed in the Vlasov ejuation. As in
ref.®, we rather compensate for them by the introduction of an external pressure
p. The eq. (5) together with (4) can easily be written as

> 2n 3( )" n 3 2n|>
U+D u)g::adp—' i + ——" e curl u . (8)
(2n+1) (2n+3)

For incompressible nuclei, eq. (6) has the solution (case a)

u =4, curl (; kr) r ¥, } + B d 7a

'} Q,( ) 20 Rgra (r YR) (7a}
== w B Y

P D i R,r %0 °

whereas for compressible nuclei without external pressure the normal parity
solution reads (case b)

> 2 .. > .
u = AE curl (Jz(kr) T YRo) + Bl grad (Jl(hr) Yko)' (7b)

On the othcr hand, the monopole solution is (case c)

T=a (hr)T/r (7¢)

2

»nd the abnormal parity sclution is (case d)

sy curl (5,007 Y, ). (1)

With these solutions, the dispersion relations for the longitudinal velocity of
sound € = w/hvp and the transversal one ¢y = w/Xvp relative to the Fermi

velocity become
1/2n

1/2n
(.3 S (N (8)
2n+3 ’ I \i2n+l)(2n+3) °
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In the case of second order truncation, 2n = 2, i.e. for the ordinary elastic
model, all three truncation schemes of ref.® , ref.8 and of this paper, yield
the same dispersion relatioms, ¢ = ¥3/5 , ¢p=v1/5, whereas for instance for
the fourth order truncation one obtains

+* CL * CT
Y & H, re£.® 0, .54, .91 .20, .77
HGW & L, ref.D 314, .84 .374, .58
This paper .60(1xi), .85i,.85 .46(1t), .65i, .65

Our schemes, hence, give only one real solution which we consider the physical
one. On the other hand, for infinite truncatjon, 2n + =, we obtain the limits
¢f, =Cr > 1 as required by the Landau theory®»‘.

The eigenfrequencies are determined by the Laplace boundary condition that
the radial-radial pressure Pyr at the surface equals the isotropic IIn:essure P
and by the boundary condition that the radial-tangential pressure Pyg vanishes
at the surface. Furthermore, normalization is given by the Neumann boundary
condition that the radial component of the fluid velocity ur equals the boundary
velocity. This pres<ure temsor, entering in the Euler equation of motion (3b) is
given analogously to eq.(5) by

3211-1
- (i.ux)zn_| P]]...= —— ?'(x o U, ox a
3 By ee Xy i Ry P IS PRSI L R T
e 2n-1
20t 9)
AV g F
. E ()2 @) 2 . %av-1
=1 9% ... 39X ijay .8y o WY s s
el Cy-1 130y 0005y
It can be written in vector form,
el [ew . R
Pij= 5 K"-K*‘; Gij div w }, (10)
i i
where, for instance for case b, the vector ¥ reads
> 27 n 2
w—cLA"'-Z—nTcTB (i)

and K, B are the first and second terms of the r.h.s. of eq. (7b), respectively.
For the cases a, ¢, d, similar expressions hold and the limits n + =« can easily
be performed. Finally, we obtain the energies of isoscalar giant resonances
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B ‘Kva 1/3
Al/3

fw = 45.7 MeV A /°x 12)

o
in terms of the dimensionless wave number x which, for the cases indicated,
is the solution of one of the following characteristic equationms,

2002 - ) =P+ 265,00 = 0 (133)

*2 (@1 U - 26,0 [E-DED%H-21 + 26500 [2@s2)-2] = 0

(13b)

x* - 2 (x) = 0 (13¢c)

L -1 -f) =0 , (134)
A 1/3

where £9(x) = xjg,.;(x)/ip(x) . The resulting energies in units of MeV/A are
listed in the following table together with those obtained wirh the second and
fourth truncation schemes.

7nd 4th w th

Mode exp inc. comp. inc. comp. inc. comp.
25 40-68 54,5 54.2 74.1 73.3 137.9 275.5

2t - 81.8 99.5 141.7  117.8 234.1 382.8

3~ 105-120 81.9 80.1 113.1  109.8 220.7 339.9

4F - 105.8  102.4 146.9  140.3 303.6 401.4

of  75-85 90.8 92.3 95.1

1 126 ? 70.0 84.9 114.4

" - 118.4 152.8 263.6

2" - St.4 66.3 114.4

In concluding this study we note that those modes which do not involve
large deformations of the Fermi sphere, namely the monopole breathing and the
dipole squeezing modes, are only moderately affected by the higher moments.

The monopole energy can be brought down to the experimental value by employing
a surface dependent compressibility, see ref.8, Also the quadrupole twist mode,
although not yet being observed experimentally, lies at a reasonable energy.
The fact that the 17 and 2 modes have the same energy is accidental since they
obey the same characteristic equation. The normal parity modes, on the other
hand, which correspond to large deformations of the Fermi sphere, lie much too
high, well 2Love the experimental values. This gives rise to the comjecture that
the higher moments or, equivalently, the higher multipole deformations of the
Fermi sphere, must be damped by some mechanism. This can either be the effect
of the finite nuclear mean free path which would also explain the large widths
of the isoscalar giant resonances or the smooth nuclear and Fermi surfaces. All
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these effects up to now have been neglected but work is under way to take
into account one or the other of these effects.
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& Boitzmann Equation Approach te.the Damping.of Zero Sound Modes in Nuclei*

P, Schuck,* Institut Laue-Langevin, Grenoble, France

J. Winter, University of Munich, Sekciou Physik, Garching, Germany

Abstract
The Vlasov eguation plus collision temm (Boltzmann equation) represents
au appropriate frame for .the truma’n: of giant resonances (zero sound
modes) in nuclei. With mo adjusta'f;le parameters we se‘e‘m“té obtain correct positions
and widths for e.g. the giant q-ulﬂrnpe].e- Tesonances.

1. Introduction

It is well konown [1] that schematic foreces of the multipole-multipole
type give a surprisingly good description of giant resonances within the
RPA - or equivalently che TDHF-approach; this concerns for imstance the
position of energies and to a lesser extent transition densities but it
is of course impossible within this formalism to account for the (épuading)
width of the giant resomances (we treat here intermediate to heavy nuclei
for which the decay or e:caiae widch should be megligible).

We will be concerned with the giant quadrupole resonance only
but. our theory is applicable for other multipoles as well. For our model
{harmonic oscillater plus guadrupole-quadrupole force) the Vlasov equation
becomes indentical to the TDEF-equation. A further helpful feature is the
fact thac for our (time dependent) harmomic potencial moments of the Vlasov
equacion with respect to powers of the momentum break off after the second.
This means that the coupled fluid dynamic equations for demsity, velocity and

pressure tensor are still exaet.

Ta accaunt for dzmping we include & collision term [2] to the Vlasov
equation but still break off the moments after the second, in view of what
we said above certainly a very good approximation. For the collisjion integral
we take the form of Ueling-Uhlembeck [ 3 ] which has certain approximative
features as for insuance emergy conservacionm of the quasipar::;u:le energies
during the collision process; this,however,does not seex to be a serious
dravback since we will be able to explain the width of the giant quadrupole

resonance quantitatively.

¥ Mewber of the Heisenberg fellowship.
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For the two body collisions we take the s-weve part of the Gogny force
which for snergies around the Fermi surface is still the dominant
concribution [ 41 . The Gogny force [ 5 ] has been chosen becsuse it is

a good logical rep ion of a micr pic G-matrix,and alsa its

scattering length and effective range are very close (far the s-vave part)

to experimental values deduced from nucl leon ing exp

The fact that we use different effective forces in the collision integral and
fo.r the mean field is p>t contradictory since they have to describe very
different processes. :

In this way we arrive at i model [6] for the full description of the giant

q pole r ce which is p “free (the strength gf the quadrupole-
quadrupole force is as usual determined from cthe self~consistency condition of
the harmonic oscillator},

2. The model

Qur basic equation is the Boltzmann equation

.
3 £ ‘1
T IR R AR R

)3 3R 3p . .- . )
- ££'£]£l.]

x 6(5{ (pz +p'2 - pf - pf-)) [EE" slfl'

. - > -
where . £ = J-f and £' = £(R,p'.t) ete., v{p) is the Fourier transform of the
two body interaction and the mean field is given by

= Yooo2.2 a 1 2 2, o2 2,2
VE,t) =g mu; R - xq(e) Q= gm (0500 x +ﬂy(t)y2 +gm
2 2 @
a
ate) = Te(@ote)); Bm22f - P -y
For this potemtial the left hand side of (1) is che exact tramscription into
Wigner space of ifi p = [h,s] and in general it is the f = 0 limit of TDEF.
The left hand side of (1) can be solved analytically (up to classical
egs. of motion). The result is ;
£Ep,0) = FQ - 3

where F(x) is an arbitrary funection and
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3
a1 =2 D a2 =2
H o= 2 G +3 95 ED
Zmi_, i 2 iy @
B - Ei“"_i -mu) i EK- Pa; =tak

vhere the varameter - obey the (coupled) set of classical equations @

2
. 2; (0

e B g a0 E(0) = ) =0 O]
i

In the small amph\:uda lm\:,x being. d:l:u'nuned from the usual oscillator :elt-
consistency condition,this yields the well known xesult [1] u - ' Wy = 60 A ”3

in very good agreement with experiment.

For small amplitudes it is possible to develop (3) around equilibrium }'o(l - H)
where I-‘D is now the Wigner cransform of cthe groundstate density matzix. For what
follows it is very important tot to choose for 1-‘0 a step function as would be
suggested by lowest order Thomas Fermi theory [ 7). Tbis weuld correspond to an
infinite Fermi systex at zero temperature (T = 0) and consequently a0 two hody
collisions can take place since the collision integral is proportiomal to ™ [al.
Nuclei are at zero temperature but even there a smearing out qf the Ferni step
funetion is present due to either. two body correlations or, most importantly tbe
finiteness of r.};e system. For a harmonic potential ome can deduce such a ficritious
"temperature” frem 2 Strurinsky averaged Wigner transform of the demsitv marrixi9l .
off = 4 MeV vhich is a ratber

high value indeed. More Tealistic is a Woods Saxon potential for which we show in

One obtains a value constant over the mucleus of T

Fig. 1 the phase space distribution [10] £for A = 184 snd in Fig. 2 the correspoading

"temperature” is extracted in fitting to the curves in Fig. | 4 Fermi distributioz

HR.»

Fig. 1 Fig. 2
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of the type
e -w@ \[*} 2
£(R,p) = () + exp| ~Pmem— Lo = 'Ezi (6)
T(R) P

We see that here the temperature is scrongly varying from small values in
the interior to rather high values in the surface. In spite of this fact
the Fermi Ellmc:ion (6) can be quite effectively represented by distributions

2
£ =6~ -5 % (u - <)

[¢2]
vhich thea helps wery much to perform the integrals in (1). Taking in
addicion moments of (1) with respect to ;and truncatirg after second

order ve obtain [111
b= divp B

¥l 2 gy 8{a-c)

3 1 3 3
(B_r. T % axk)Pkp’Pki. EN u T «-p) =0

- o
Here we used summation convention and p, U, P are the zeroeth firsc and
second moment of f£. As we said above these equations are exaect in our medel
for vecnishing collision term that can be verified with (2) and {&). In the

small amplitude limit the inverse collision time turns out to be :

23803

2 -
~L o Eom ada | gituede - Pe

(R)
(9)
In the case of a superposition of Gaussians like the Gogny force even the
last incegral in (%) can be performed analytically and we get therefore

an explicit expression for the local collision time.

If we write the pressure temsor as

m _id
O P ao)
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where pi¥ « ((3112)2/3/5)95/3 then ve obcain for v, from (8¢) in the

small amplitude limit @
—tt
t - -:‘—: (aui 2
" - f i s iy o 2
“ij sij . de' e T [ D) 3 - 6ij an
- ] i Pl

In this limit we have in our model

a
4
[

o)

F3

Ty = a B T (-x, -y, 22) 12)

and therefore we obtaim a position independent “i' if we introduce an

effe.cive inverse collision time averaged over the pressure
id id
S _f3R-L fd3R'P a3)
eff T

From (8{(a=c),11-13) one then obtains [11] :

t-t'
¢ -
BE +Coa+ (C =ClE; 6 -f' dr e Teff 3 (14)
with
B - mjdar ola1? c =8 ni i ¢, =nal as)

where 9 and _ are the well known [ 7 Jfrequencies of normel sound (Teff = 0)
and zero sound (teff = =) vespectively. Equation (14) is the one of a damped
barmonic oscillator with a friction kernel vhich is non local in time,reflecting
the fact that an appreciable elapse of time can occur during successful
collisions. This memory effect was discussed qualitatively by Nérenberg in

a recent work [ 12 ] but no determination of Teif for zero sound modes was
atcempted. Here we give for the first time a completely self contained

theory wvith no adjustable parameters for giant resonances in muclei.

In order to discuss more specifieally the influence of damping it is

convenient to transform (14) to a third otder differential eqiation [ 11 ]
ser o . Co
B 8 + B +CB8+ — B=0 16)
Totf = Tetf
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This equation immediately teproduces the well-known limiting frequencies

of ordinary and zero sound but for finite Tegfs B8 in our case, the charac~
teristic equation of (16) hze in general complex frequencies 9 as solution. In
the limit Re # 7 .. ~ = one obrains [11]:

hra E‘J?('Jz"(g—:)z +%(2—:)4(7‘:—;_f)‘]- ;TE(] -(%)2)(17:

Prom (13) and (9) we can calculate TefE with the Gogny force [ 5 land for
intermediate and heavy nuclei we obtain a value for the width

T~ 2-3 MeV (18

in quite good agreement with experimental finding as is seen from Fig. 3.

RESONANCE WIDTH
(FWHM) (MeV)

More detailed numerical swdie's of (9,13) are necessary to obtain the detailed
A-dependznce of che width. Dovever qualitatively it is clear that our fictitious
temperature is related to the variance 4p“ of the momencta which is the larger
the smaller the nucleus.

3. Conclusions

We have presented a completely self coutained model with no adjustable
parameters to account for pesition and width of the giant quadrupole resonance.
The model cunsists of a selfconsistent time dependent harmoniec oscillator plus
2 two body eollision term [ 6 1. The ‘model without collision term reproduces
very well experimental giant resonance energies. It is well known [ 8 ] that
a Fermion two body collision term goes - in the infinite matter limit = to
zero with the square of the temperature. Giant resonances occur in suclei
at T = O nevertheless a fictitious temperature can be deﬁne'd in finite Fermi
systems coming from the fact that the finite real space available generates
a finite diffusivity of the momentum distribution according to Heisenberg's

uncertainty principle. This fictitious temperature turns omnt to be of the
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order 5-4 MeV for intermediate to heavy nuclei and constant over the nucleus
for a harmonic potential. From this it becomes also clear that the
"temperature" rises going from heavy to small muclei explaining qualiratively
the inereasing giant resonance vidths for increasing smaller nuclei. The
harmonic potential is of rourse quite unrealistic for most nuclei and iz

Fig. 2 we show that the "temperature” has a p:onam:n:ea surface p-uk for
realistic ‘Hood Saxon potentials. In this case the other extreme view that rhe
nucleons aré mrvit;g freely in the interior and only colliding in the wall
(genuine two body collisions, not collisions with the wall of the mean field)
hecomes approximately correct [13] . One could then introduce a "remperagure"
or ioverse collision time vhieh is p

surface : 1-1 = ?;if 6(r - ROJ. Taking all these considerations inte account

portional to a §-fi ion centered at the

-needs détailed numerical evaluation of the collision time (13 ) which are in
prngress{]k].?reliuinary results show that the éiu: quadrupole width is abnut
2~3 MeV broad for A ~ 200 in good agreement with experiment.

This indicates that our model is essentially correct, though improvements
concerning for instance the energy conservation of the quasipzrticles during
collision should he incorporated. Investigations in this direction are in

‘progress.
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DISSIPATION AND FLUCTUATION CAUSED BY

STATISTICAL EXCHANGE OF PARTICLES®

H. Feldmeier and H, Spangenberger
Institut fur Kernphysik,
Technische Hochschule
Darmstadt, Germany
We calculate drift and diffusion coefficients for the dissipation
caused by particle exchange between two Fermi pases. The goal is to find
->
the probability rate W(;,n) for the relative momentum ; to change by a
. -+ . -+ > . -+
certain amount N per time. The mean value of W(p,n) with respect to n
determines the drift coefficient ? (friction force) and the record moments

are the diffusion coefficienta Dij which enter the Fokker-Planck equation.

_ 3 -+ >
Y, = —/d n w(p,n) n; (6D

pij = 1/2 fd3n WBn) 2)

This way of calculating friction and diffusion does not a priori assume an
Einstein relation. The general relation between both, the so called dissi-
pation fluctuation theorem, manifests itself in calculating the coefficients
as moments of the same probability distribution W(;,ﬁ).

To determine W(;,;) we have to consider the dynamical evolution of
the system during a small time interval At. In our model we idealize the
two heavy ions as two Fermi gases having different mean velocities and

being in contact at a window through which they can exchange particles.

*Work supported by the Bundesminister fiir Forschung und Technologie of
the Federal Republik of Germany
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Since at low excitation energies the mean free path of a nucleon is long
compared to a typical window size, we regard the time evolution of the two
gases close to the window as a free motion of particles. To illustrate the
dynamics let us even more simplify the picture and regard the particle ex-
change in the two-dimensional one-body phase-space. Figure 1 shows in the
left part the phase-space distribution for two Fermi gases with different
mean velocities 31, ;2 and zero temperature in contact at a window (x=0).

In the right part the shape of the distribution is shown at a small time

At later, Due to the mismatch in velocities, occupied cells from the left
enter into unoccupied phase-space on the right of the window and vice versa.
Calculating now the mean velocity on one side, it obviously has slowed down.
The same holds if the two gases are diverging. This case is illustrated

in Figure 2. Here empty phase-space cells are moving into originally oc~
cupied space. This exchange of holes has the same dissipative effect as

the exchange of particles. In the interior region fully occupied cells zlso
cross the window replacing other occupied cells which themselves have moved
away. But this is only a rearrangement in the occupied phase space and does
not result in an observable change in the state of the system. Therefore
only transitions close to the Fermi velocity VF contribute to a change

in observable quantities like the relative momentum or the mass number

of one nucleus., Going back to the six-dimensional one-body phase-space

and taking into account the different contributions from particles and

holes, we arrive at the following expression for W(p,n)

m

> 1 g R n 7 -1 -1 (3)
Wip,n) = 3 ;ﬁ l— a gl(m) (l-gz(m) + gol m) 1-g1( ;)

fo is the phase-space density of nuclear matter, m the nucleon mass and 3

the window size and direction. gl and gz are the two velocity distributionms,
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wnich may have a diffuse Fermi-edges; and are shifted by the mean velocities
31, ;2. The Pauli blocking effect shows up in the curly bracket part which
allows only those velocities ﬁ/m to coniribute where the phase space in one
nucleus is occupied and in the other one iz empty or vice versa. The nega—
tive velocities originate from the holes.

We now calculate the friction force and the diffusion coefficients
as they are defined in Egs. (1) and (2), assuming the relative velocity

3§ = U,-u, and the diffuseness T of the velocity distribution to be small

21
compared to the Fermi-velocity V.. The resulting friction force is just

the well knowvn window frictioJ

( loo ) -
>__ 3 olo u %)
Y = -mp 16 Vg -0 oo 2

p is the nuclear density and O the window area. In order to incorporate the
effects from the diffise Fermi surface we are parameterizing the velocity

distributions G, ,(d,.) as shown in Figure 3. The excitation energy of a

1,2

Fermi gas with the above velocity distribution is given by

¥ _,m 32 3 142 ()
E (1) = A 7 T {1+ 70 (VF)

Thus 2, although it is a velocity, may be regarded as a measure of the
"temperature" of the system. The excitation energy is like in the Fermi
distribu:ion proportional to the "temperature” squared.

In "igure 4 we illustrate the distribution in velocity space which
enters the part in the curly brackets of Eq. (3)., During the course of a
heavy ion collision,initially we have a system with two sharp edged Fermi

spheres displaced by the relative velocity (left part). Although the system
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is cold {(1=0) we already encounter large fluctuations from the outer sickle
shaped parts where the Fermi spheres do not overlap. At a later stage the
relative velocity has s’owed down, the Fermi spheres overlap more, and the
excitation energy has smeared out the edges of the distributions so that
additional transitions can take place where the edges overlap (center part
of Fig. 4). At a very advanced time the relative momentum has been dissi-
pated completely and transitions only take place due to the fact that the
cystem has a temperature {right part of Fig. &4.).

Calculating the diffusion tensor Dij according to Eq. (2) it turns out

that it can be split in two parts,
D= |¥| D @) + 1D (q, o aD (6)

one being proportional to the absolute valuve of the relation velocity |3|
and the other proportional to the temperature parameter T. Du and DT are
. . -+

3 x 3 matrices which depend on the angle @ between the window g and the

s s -
relative velocity u.

The matrix elements of Du are given in Figure 5, the z-direction being
the normal vector of the window. The temperature part D depends on T/':'

-+ .
as well as on o. However for t >> |u! the result becomes again rather

simple:
o 100
For T >>[{u] ¢+ D-T (010 (7)
loo2
and the Finstein relation is obeyed (compare Eq. 4)
" (8)

Y == ? m K for T >> I;I
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Thus we obtain a description which in a natural way proceeds from a cold
system far off equilibrium toward thermal equilibrium with the diffusion
initially driven by the relative velocity and then gradually going over to
thermal fluctuations. Based on the same physical picture Randrup2 calcu-
lated in a different derivation rather similar diffusion coefficients.

In Figure 6 we display the double differential cross section as a
function of the energy and scattering angle of the outgoing fragments for
two different reactions. The calculation is the result of a moment expan-
sion of the Liouville-Fokker-Planck equation using the above determined
friction and diffusion coefficients and a conservative potential depending
only on the relative distance of the two nuclei. An important result is
the rather broad distribution for low energy losses. Due to the neglect of
deformation the cross section does not stretch down in energy as far as in
the experiment. Otherwise the calculated fluctuations do not seem to be in

contradiction with the measured data.

15, Blocki et al., Ann. Phys. 113 (1978) 330.

27, Randrup, Nucl. Phys. a327 (1979) 490.
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THE "WALL FORMULA" FOR NUCLEAR DISSIPATION AS CLASSICAL LIMIT
OF THE DAMPING OF COLLECTIVE MOTION IN THE TIME-DEPENDENT RPAT

C. Yannouleas*, M. Dworzecka, and J. J. Griffin**

Department of Physics and Astronomy
University of Maryland, College Park, Maryland 20742 U.S.A.

References 1,2 describe a microscopic model for the damping of the one-
phonon RPA collective state, |c> = QZ|0>5 . This one-phonon RPA collective
state is defined within a restricted subspace, Sgp, of the discrete lp-lh struc-
ture. Its damping is described within an extended subspace, 5=Sg+Sp, by the
time evolution of a wave packet according to the time-dependent RPA! and the
time-dependent Second RPAZ approximations of the complete Schrddinger equation
when initialized with the one-phonon state. Here we focus on the connection
of the microscopic model with the phenomenological Vibrating Potential Model
for the nuclear harmonic collective motion and, thereby, with the one-body
theories for nuclear dissipation, in particular the Swiatecki wall formula. 3
Since both the Vibrating Potential Model and the one-boly dissipation theories
utilize a phenomenological time-varying mean field, we are primarily interested
in wave functions which describe the damping of cohcrent oscillations of the
mean field. The one~phonon state, however, is unable to describe time-varying
oscillations of the mean field. Such oscillations require wave packets formed
by linear superposition of the RPA many-phonon eigenstates."’s

Undamped Packet
We first consider undamped oscillations of the mean field, described by

the following multi-phonon minimum uncertainty coherent wave packet:

—i(mct+5)

2
locry> = expi- G+ ce along @

where the many-phonon states, |c(s)>, are created through repeated action of the
RPA collective operator, Qg, on the ground state.

Damping

Next, we describe the damping of the mean field oscillations by propagating
in time the initial value, |¢(t=0)>, of the wave packet (1) according to the
complete Hamiltonian, H. The complete Hamiltonian H includes all the interaction
terms providing finite coupling between the restricted subspace, S,, and the
additional subspace, S5,. The wave packet, |W(t)>, describing the Eamping is then:

~iHt
lo¢e)> = e 1BEM 4 (rany>. @
Solution for Damped Time-Dependent Packet

We approximately solve the initial value problem posed in Eq. (2) by expanding
the one-phonon collective state, |c>, over the "eigenstates” |v> of H within the
extended subspace, S. These stationary states, [v>, are crcated by the action
of the boson operatars Q), on the ground state. The complete Hamiltonian, H,
acting on |v> yields:

IResearch supported by the U. §. Department of Energy.
Reszarch is from a thesis to be submitted to the University of Maryland
éraduate School by €. Yanrouleas in partial fulfillment of the requirements
for Ph.D. degree in Physics.

#%and Institute for Physicil Sciences rad Technology, University of Maryland.



41

,87) =4, & 3
The eigenstates |v> are specified as solutions of the linearized equations
of motion within the extended subspace, 5. The additional subspace, Sp, might
include additional states only of the 1lp-lh type1 or it might be more general.z’5
Here we restrict ourselves to the RPA approximation and 1lnclude additional states
only of the lp-lh structure (e.g., continuum), since we want to compare the
microscopic model with one-body dissipation theories. The creation operators
QT in Eq. (3) are then given by:
Vst + Vot * +
Q= I Y Gw)aa -2, (laal+ [ (Yhrlo)agas -2z dazal. ()
mi aj
Indices (m,n) refer to particles, while indices (i,j) refer to holes. The tilded
indices (ii,j) refer to additional 1p-lh states. The amplitudes Ypi(w,), Zni (wy) s
Y55 (wy)s Zz7(w ) and the eigenfrequencies w, are solutions of the RPA equations-—
of~motion. “Knowing the states ]v> we can expand the one-phonon state |c> as:

- *
= g £ v, ()
Then the wave packet (2) describing the damping is approximated by:
2
-iEqt M _£ -i8 x  —loyt .
le(e)> & e exp{ S tee % fvc e Qv}]0>s. (6)

In refs. 1,2, it is shown that when

(1) the variations are slow {(i.e., when the coupling matrix elements, Kﬁi(”c)’
in_Eq. (9) below, and the level spacing dyz vary slowly with the states
|@i> of the additional space Sp);

(2) the coupling is weak (i.e., sufficiently weak to cause only a small collective
energy shift and mixing of the collective state into eigenstates ]v> in a
narrow energy band);

(3) subspace S, is dense (In the sense that coupling matrix elements much exceed
level spacing, (lKﬁi(”c)I/dﬁi >>1),

then the coefficients fvc can be calculated approximately in closed form. 1In
particular, their counterparts, f.(w), for the continuous Sp case are found:
T'(we)
2 1 c
lf (w)l e (7)
c 28 (m_uo)Zi_[P(;Q)]Z

where the continuous index w is substituted f{or the discrete index v. wg is the
perturbed value of the collective frequency, w,. The width I'(we) is given by

Tw) =28 57 dn al [KG50) | see - c@) +ed)). (8)
where € ¢
K@@, 10 ) = nzj Vein Yn3 @ + Viniy %aj @) 9

and the coefficients ypj(wc)s 2,4(we) are the RPA amplitudes determining the col-
lective operator QI. Then the energy dissipation is associated, in the case
of a finite-A nucleus, entirely with the escape width, Tt, for direct particle
emission in the continuum.

We concentrate now on demonstrating the time decay of the collective energy.
To do this we first define the explicit collective variables associated with
the collective phonon.
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~

By analogy with the quantal harmonic oscillator we define the operator, 0"6,
for the collective coordinate as:

s o ot = + at a
0, =+ ‘2, i Qg +f, 4} 10)
To define the momentum operator, 73‘:, for the collective degree of freedom

within the extended subspace, S, we use the general definition for the time
derivative of an operator in the Schrddinger pieture:

iM
a ¢ A * '-1-_ a
== H,0.1 = i, ‘E,“v{fvc Q-£,. Qv}’ an
where the inertial parameter, M., is taken to be
A
e ™ Zug a2)
A 0 A
in order to guarantee that 0:: is canonical to f’é:
A A
[O¢s ] = 4. (13)

The time-dependent expectation value of this collective coordinate, calculated
with the damped wave packet solution (6) becomes:*

WD) & ¥ = e Fry +e!® Py, (14
where ¢
1wt

+ow -

Fe) = /2 e w)? e aen). 15)

With the approximate coefficients f.(w) given by (7), the quantity F(t)
reduces to the form:!»2

-iugt = [T (w)t]/2

F(t) X e 0<ct <, (16)
Then the expectation value of 5’c oscillates and decays, as follows:

@@ |5 e =2 e T2 cosuyt +6). an
Likewise, we calculate the expectation values of the momentum,"

(e [ B |¥(e)> = d—dt IO AN IO (18)

using Eq. (17) to obtain the relationm,

afy
d

t

- 2 ~
<¥(t) | [¥(e)> = -r<¥(t) | o |¥()> - Mc(w[z, + —r4~)<w(t)l o l¥my>. a9
~

This relation (19) for the expectationvalues of O and ﬁ/c has the same
form as Newton's equation of motion for a classical damped harmonic oscillator.
We can thus interpret (19) as describing two kinds of collective forces: a
conservative force proportional to the collective coordinate and a frictional
force proportional to the corresponding momentum.

We can also define a frictiomal Hamiltonian constructed to prescribe
precisely the same time behavior for the collective variables as the exact
Hamiltonian, H, produces in the time-dependent RPA approximation. Thus we define
Hp by requiring that its substitution for H in Eqs. (11) and (19) leaves those
equations unaltered. We find that such a frictional Hamiltonian must be non-
linear; i.e., it must depend not only upon & and #, but also upon |¥(t)>
through their time-dependent expectation values, as follows:
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*, = h€+i(z+r—2)&2+ O <v () £
Foam T2 Wot TP T IO P lvet)=, (20)

up to an arbitrary additive function of time alone.

The conservative collective Hamiltonian, Jﬁi, 1s defined as the sum of the
collective kinetlc and collective potentlal energy parts of the frictiomal

Hamiltonian, i.e.,
a2

M 2
_ Pe e, 2 T a2
He=a t7 @ PO @
and its expectation value with the wave packet |W(t)>, less the zero point energy
of the collective degree of freedom, is defined as the collective excitation energy:

& (£) = (D) |, |¥(1)> - o<0]H |05, (22)

Straightforward algebraic calculation yields the remarkable result that the col-
lective excitation emergy depends only upon the squares of the expectation values,
rather than upon the expectation values of the squares of CT and ZF@’k

@] p vt u 2 N
L0 =g+ w2 + Dy | 5 feeer?. @3

The rate of dissipation of the collective energy, gﬁiss(t), is defined as
the time derivative of the collective enerpy (23), and calculated using (17)
and (18) to be:

a 2
R < ()| B |¥(e)>
PR LAY P - -Tt 2
gdiss(c) = 2T 2, ¥ -2 € rHug e sin” (ut+6). (24)

The last step in (24) follows because the damping 1s weak, so that P/2 << Wy
The energy dissipation rate (24) 1s proportional to the kinetic collective energy
as for a classical damped harmonic oscillatcr, but Irn contrast with the decay
of a single collective eigenstate,!s?

From an appropriate limit of the expresslon (24), one can extract the coef-
ficient which Swiatecki's classical "wall formula" would imply for the energy
loss rate of a spherical droplet oscillating in a pure (sufficiently small)
multipole model.

We use the following two-body schematic interaction which accounts for the
motion of the nuclear surface:

where vﬁjin = —KDmiDnj (25a)
(Q)
a Dss' = —<s'lrdu dr(l‘) YAO(S)IS> (25b)
an
sPw % u, s-m. (25¢)

(0)(r) is the shell model potential, (A 0) the multipolarity of the surface
vibration and R, the nuclear radius. With the schematic interaction (25) the
collective variable, <W(t)[<7 |#(t)>, becomes proportional to the deformation
parameter, o O(t), of the average nuclear surface:

()] & |¥(t)> = ¢ a,, (). (’6)
Then ¢ A0

gdiss(t) = -y &io(t), where y = cZMcI‘. @2n



formula, we consider the limit of large nuclear radius and infinite square
well shell model potential. Then a lengthy but straightforward calculatiom
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To establish a comparison with the constant coefficient of the wall

4

yields for all A << 2kgR/7:

4
A(kR)
G i 3/2 /2, 3 _
Yiimie = —_—8'"2 a {(tn) - (1-n} + Gn=1) [¥14n - vVi-n]

Aw
+ @ n-Dn oty g . e 28)

1+/15 F

Expanding (28) in 2 Taylor series we get
-h(kFR)" 5

Ylimit=—8—ﬂ—2—- (l+—2-n+...). (29

The low frequency limit of this expression agrees exactly with the classical
Swiatecki wall formula.3 The present result thus allows one to recognize
explicitly certain limitations of the classical wall formula.

J.
C.
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LINEAR MOMENTUM TRANSFER IN
NUCLEUS-NUCLEUS COLLISIONS

V. E. vViola, Jr., Indiana University, Bloomington, IN kTLO5
B. B. Back and K. L. Wolf, Argonne National lLaboratory, Argonne, IL 60439
T. C. Awes and C. K. Gelbke, Michigan State University, East lansing, MI 48824
H. Breuer, University of Maryland, College Park, MD 207L2

A useful overview of the global features of non-relativistic nucleus-
nucleus collisions can be obtained from studies of the linear-momentum-
transfer distribution which characterizes the target-projectile interaction.
For reactions involving highly fissionable target nuclei, where essentially
the total reaction cross sectlon is accompanied by fission, informetion of
this type is provided by measurements of the angular correlation between
binary fission fragments.l Recently, we have investigated the reaction be-
tween 23U and %0 ions at 8.75- and l9.T-MeV/nuc1eon2 in order to study the
evolution of heavy-ion reaction mechanisms as a function of increasing bom-
barding energy. Angular correlation results from these experiments have beea
incorporated with earlizr such data in the hope of deriving a more systematic
understanding of the distribution of strength of the reaction cross section
as the bombarding energies increase well above the interaction barrier. The
primary objectives of this analysis are: (1) to summarize the systematic
features that characterize nucleus-nucleus reaction cross sections for the
experimentally-known region extending well above the interaction barrier and
(2) to project these results to energies up to 100-Me¥/nucleon range where
new accelerator technology will soon make extensive experimental studies
possible.

In Fig. 1 in-plane correlation data for the %0 + 238y system are shown

for several bombarding energies from 110 to 315 MeV (6.9 to 19,7 MeV/u).
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Except for the lowest %0 energy, two components are apparent in the data.
At all energles the major fraction of the cross section is concentrated in
a well-defined peak corresponding approximately to complete linear momentum
transfer. The second component appears at correlation angles slightly
smaller than 180°, where one observes the systematic growth of a broad dis-
tribution of relatively low momentum-transfer events. The arrow on each
peak indicates the angular correlation centroid angle for complete linear
momentum transfer, B;B, calculated from kinematics which assume symmetric
mass division and the most probable total kinetic energy release in fissinn
predicted by systematics.

Two systematic features of the angular correlation data in Fig, 1
stand out. The first of these is the growth of the low-momentum-transfer
component with increasing bombarding energy. These events are assumed to
be assaciated with peripheral collisions and we define this compoaent of
the cross section as Op: In order to evaluate the importance of the peri-
pheral component relatlive to the total reaction cross section, GP/OR, com-
plete angular correlation data including all out-of-plane events are re-
quired. The results of fragment correlations in both 6 and ¢ dimensions
demonstrate the existence of large non-planar contributions due to partial
linear momentum transfer processes.

The low momentum~-transfer component of the reaction cross section can
best be described in terms of peripheral reactions lnvolving a significant
target-projectile interaction during the collision stage in which only a
part of the projectile is absorbed. Fig. 2 shows angular correlation data
for the 315-MeV €0 + 233 system in which projectile-like and lighter frag-

ments have been observed in coincidence with correlated fission fragments,
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These data show thaet Be-O fragments are strongly associated with the peri-
pheral portion of the reaction cross section, presumably associated with
nucleon-transfer, projectile breakup and demped reaction mechanisms.
Further, it is noted that the mass of the projectile residue appears to
decrease as the linear momentum transfer increases. This suggests that at
least a fraction of the missing projectile mass has been transferred to
the target nucleus. In contrast, the proton- and alpha-particle-gated
correlations appear to consist of two components: one related to peri-
pheral processes associated with breakup of excited projectile-like frag-
wents, and the other correlated with the large momentum-transfer component.

A second systematic feature of the data in Fig. 1 is the energy-depen-
dence of the deviation between the calculated centroid for complete momentum
transfer and the experimental centroid for this component of the distribution.
Shown in Fig. 3 are values of the percentage linear-momentum transfer, % ;,
de-ined in terms of the racio of the observed linear-momentum transfer to the

/PI’ as determined from measured AB°_ values.

beam momeatum, % 3 = 100p B

exp
The results below 10 MeV/nucleon based on this centroid analysis are con-
sistent with complete momentum transfer within accuracy of the technique,
which would not be sensitive to massive transfer or prompt nucleon emission
processes at the < 10 percent level. For projectile energies above 10 MeV/
nucleon it 1s apparent that on the average complete momentum transfer becomes
increasingly less probable and scales approximately with the velocicy 4E7K
of the projectile. In addition, as the beam energy/nucleon increases, the
fraction of linear momentum transfer decreases syscematically. This 'missing
momentum” has been shown to be zarried off by promptly-emitted light ions,
(Fig. 2).

From these results it ls clear that above 10 MeV/mucleou the complete
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fusion mechanism is not well-defined from an experimental point of view.
For this reason we have proposed the term central collisions as a more
appropriate term for discussing these large mowentum transfer events.

It is observed that the ratio OC/OR can be correlated with an effective
beam momentum corresponding to an energy E in excess cf the Coulomb
barrier V, piff= J2H(E-V). This dependence is shown in Fig. 4. Extra-
polation of the results for GC/UR leads to the conclurion that the central
collision component of the cross section, at least for light heavy ions,
should become negligible in the region c€ 50-TO MeV/u, respectively.

The systematics of Fig. 4 are found to be in good agreement with
angular correlation results with 30 MeV/A end 60 MeV/A 12¢ peams incident
on a 2%y target. The implication of these results is that somewhere in
the region of 50-70 MeV/nucleon, the central collision component of the
reaction cross section no loager can be described In terms of a cohereat
projectile-target interaction, at least for 2C-to-Z°Ne ions. This behavior,
coupled with the observation of prompt light-ion emission for 20 MeV/u %0
ionsll suggests that nucleon-nucleon collisions begin to dominate nucleus-
nucleus collisions in this energy range at the expense of coherent mean-
field processes. The mass dependence of these simple extrapolations implies

that for heavier ions, mean field behavior may disappear at even lower energies.
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Preequilibrium Light-Particle Emission in 16O—Induced Reactions

T. C. Awes,* C. K. Gelbke, G. Poggi,t S. Saini,¢
D. Cha, R. Legrain,tt and G. D. Westfall

Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824

The dependence of light-particle emission on target and incident energy
has been investigated through inclusive measurements1 of p, d, t, and a par-
ticles in 16O-induced reactions on 271&1, 90Zr, and 197Au at 140, 215, and 310
MeV. The light particles were measured in two AE-E telescopes, each subtend-
ing a solid angle of about 20 msr and consisting of a 400-pm-thick surface
barrier detector followed by a 7.6-cm-thick Nal detector. For each system the
light-particle distributions were measured at many laboratory angles typi-
cally covering the range between 20 and 155°.

Recently the precompound model of nucleon emission has been generalized
to heavy-ion-induced reactions.2 In this generalization, the modified
Boltzmann equation approach is applied with an additional term included to
account for the time-dependent addition of nucleons from the projectile to
the equilibrating system. Only s-wave collisions are considered, and the
fusion rate is determined by the relative velocity at the point of contact.

197Au(160,p) reaction at

The angle-integrated proton energy spectra1 for the
140-, 215-, and 310-MeV incident energies are compared in Figure 1 to three
different precompound calculations.2 In the first case, an energy-independent
initial exciton number of n, = 20 was assumed. From this calculation it is
seen that it is not possible to simultaneously reproduce the shape of the
proton spectra at all three incident energies with a single energy-
independent initial exciton number. Instead, values of n, = 18, 25, and 30
are required to reproduce the spectral shapes at 140, 215, and 310 MeV,
respectively. The effect of the restriction to s-wave collisions was investi-
gated by decreasing the available excitation energy by the rotational energy
for fusion occurring at the angular momentum limit. These calculations, which
use an initial exciton number of 16, are shown by the dotted curves of

Figure 1. The effect of decreasing the available excitation energy by the
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rotational energy is the same as sharing the excitation energy among more
excitons. As a result, the energy dependence of n, does not appear tu be due
to the restriction to s-wave collisions. It was also found that varying the
rate of the fusion process had little effect on the required initial exciton
number. The energy dependence of n, is apparently due to other assumptions of
the precompound model.

In order to study the target dependence and evolution of the light-
particle emission with incident energy, we have used the moving source param-—
eterization3 to extract the characteristics of the light-particle spectra
with a minimum number of parameters. The distribution. are then given by

QEE_

dEda
where E and o are the laboratory energy and angle of the detected particle,

= NoEl/zexp[—(E + El - 2E1/2E11/2 cos8)/T] ,

E1 = %mv2 is the kinetic energy of a particle at rest in the frame having
velocity v, T is the source temperature, and N° is an overall normalization
constant, This parameterization provides a very satisfactory description of
the light-particle distributions.1

The energy and target dependence of the velocity and temperature param-
eters is shown in Figure 2. For comparison the dependences expected for emis-
sion from the completely fused systems are also shown by the dotted curves.
For the case of reactions on 27A1, the temperatures and source velocities
are consistent with emission from the compound nucleus. However, the param-
eters for reactions on the 90Zr and 197Au targets are not consistent with
compound nucleus emission, but instead follow the same trend as the Z7A1
parameters. The lack of dependence of the light-particle spectra on target
nucleus suggests that the particles are emitted at an early stage of the
reaction before appreciable equilibration has occurred. The moving source
fits indicate that the preequilibrium particles are not emitted from the
compound nucleus frame as assumed in the precompound model. This may account
for the energy dependence of the initial exciton number of the precompound
model.

The dependence of the nonequilibrium charged-particle emission observed
here perhaps clarifies the situation for nonequilibrium neutron emission.

Typically, those reactions in which preequilibrium neutrons have been observed
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are ones with compound nucleus temperatures and velocities which are much
different from the preequilibrium values expected according to Figure 2. In
these cases the nonequilibrium neutrons have spectral shapes which are dis-
tinctly different from the much more abundant evaporation neutrons and, there—
fore, are easily identified. On the other hand, those systems which have been
reported to be consistent with equilibrium emission are generally found to
have compound nucleus temperatures which are very similar to the expected
preequilibrium values. As a result, unless the complete fusion component of
the neutron spectra can be eliminated, using for example, coincidence require-
ments with strongly damped reaction partners, the nonequilibrium component
will simply be lost in the large, similarly shaped, evaporation component.

The solid curves marked Tnn and Yon in Figure 2 were calculated with
the assumption that each interacting nucleor of the projectile interacts
initially with a single nucleon of the target. In this case, the rest velo-
city, Von? of the interacting subsystem is about half of the relative velo-
city of target and projectile at contact. The temperature, Tnn’ was calcu-
lated assuming the excitation energy of the interacting subsystem to be
shared as a free Fermi gas.3 According to the solid curves of Figure 2, the
observed temperature and velocity parameters are 25% lower than the limit of
equal contributions from target and projectile. The trend of the temperature
parameter is shown in Figure 3 to persist toward relativistic energies.s’4
The so0lid curve is again the dependence expected for a Fermi gas consisting
of equal target and projectile contributions. The dashed cur—e is the result
of a calculation for a free, strongly interacting gas in thermal and chemical
equilibrium at an excitation energy determined by the most probable impact
parameter.

For heavy-ion collisions at relativistic energies it has been shown
that the energy spectra of composite particles can be related to the proton
spectra according to a simple power law. In the coalescence model this power
law is explained by the assumption that the complex particles are formed
by the coalescence of free nucleons which happen to occupy the same region
of momentum space. The model is a pure phase-space approach and makes no
assumptions about the dynamics of the process. It involves a single param-
eter, the coalescence radius, PO, which is the radius within which



coalescence occurs and which acts as an overall nmormalization constant. In
this model the deuteron momentum distribution is expected to be proportional
to the product of the proton and neutron distributions; the triton distribu-
tion is expected to be proportional to the proton distribution times the
square of the neutron distribution, and so on. In practice, the neutron dis-
tributions typically are not measured, and so one assumes the proton aud
neutron spectra are alike and uses only the proton spectra in the coalescence
calculation. The composite particle spectra of the present study are repro-
duced remarkably well by the coalescence relation as demonstrated in Figure 4
tor the 160 + 27Al reaction at 140-MeV incident energy. The coalescence
results are shown by the open squares. The success of the coalescence rela-
tion is surprising in the light of recent results which have shown differ-
ences between the nonequilibrium proton and neutron distributions,5 presum—
ably due to Coulomb effects. Understanding the differences in the nonequilib-
rium proton and neutron distributions and the reason for the success of the

coalescence relation are interesting problems for future investigations.
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FRACK - ;iTATION at 20 to 43 MeV/NUCLEON

M. N. Namboodiri, R. K. Choudhury, J. B. Natowitz, P. L. Sonthier,
L. A. Adler, R, P. Schmitt, R. L. Watson, and 5. H. Simon

Cyclotron Institute
Texas A&M University, College Station, Texas 77843

Determination of the dominant nuclear reaction mechanisms in the 20 to
100 MeV/nucleon energy range is a subject of considerable current interest
since it is in this transition region between Tow energy and high energy
phenomena where interesting qualitative changes are predicted to occur. 15253
These changes are expected to be associated with the achievement of relative
velocities which surpass the velacity of sound in nuclear matter or the

velocity of the canstituent nucleons.
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FIG. 1. Light-particle spectra observed at ¢, =15°. The spectra of H and He isotopes from (&) Ta. (b Ag. and
(c} Nl targets are shown. p, open circles; 4, open squares; !, triangles; *He, solid squares: ‘He, solid circies.
Dashed lines represent fragmentation modal calculations with ¢y=85 MeV/c.

Our recently published study of 1ight particle emission in the reactions
of 43 MeV/nucleon 20Ne with Ni, Ac and Ta targets4 suggests that achieving a

center of mass velocity above the coulemb barrier comparable to the Fermi
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velocity of the projectile is a sufficient condition to assure that purely
5,6

statistical projectile fragmentation processes occur, which are entirely
analogous to those observed at relativistic energies.7 This is evidenced by
the forward angle energy spectra of H and He isotopes which show components
having energies per nucleon essentially equal to that of the projectile and
widths which may be characterized by temperatures of 8 MeV or, alternatively,
by nucleon momentum widths o, = 85 MeV/c. (See figures 1 and 2). Thus the
spectral widths are the same as those reported for relativistic collisions
but occur at (Ecm-v)=30 to 34 MeV/nucleon (for the different targets). The

Fermi energy for the 2[’Ne nucleus is 29 Mev.8

i 1 v | ' T
860 MeV 2%Ne « To

3
10 6 =15

«p 7
a d
- 3'

w2 » e

o 3'0 * *Helxi0
g -

RELATIVE VLE
=3

N

100} t\\ ‘\ ‘G\ -
N )

- N N
LI NCERN

107! 1 ! L { L | J

o] 20 40 60
E, Mev

FIG. 2. Slope determinations for Ta data at &y =15°,
The data have been transformed into the projectile
frame.

Although the poor statistics for the energy spectra of projectile-like

fragments collected simultaneously do not allow an accurate extraction of 9,
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from the spectra, a value of 85 MeV/c is also consistent with high energy

peaks observed in the forward angle spectra for C, N and 0 fragments (Figure
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FIG. 3. High energy portions of the spectra for C and 0 ions
observed at 8 = 7° in the reactions of 860 Mev 20y with Ag.

The dashed lines represent fragmentation mode) calculations
with 9, = 85.5 Mev/C.
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In contrast to the data obtained with 43 MeV/nucleon 20Ne, extraction
of the widths from projectile-like fragments observed in the reactions of
20ne with 197Au at 20 MeV/y leads to values of 30 to 40 MeV/c.® Taken
together, these results indicate a very rapid change in the nature of the
fragmentation process between 20 and 43 MeV/nucleon.

We have attempted to pursue these investigations by extracting higher
energy beams from the TAMU cyclotron. Beams of 103 particles/second of 22.5
MeV/nucleon 20Ne and 32.5 MeV/nucleon ]OB have been obtained and used to
study light particle emission in reactions with ]8]Ta. Spectra obtained in
these studies are shown in Figure 4. Each of the spectra shows evidence of
a high energy component peaking at energies somewhat below that corresponding
to the projectile velocity. The highest energy component in the spectrum from
the 20ne experiment is probably not from simple fragmentation. The prominent
high energy component observed in the 32.5 MeV/nucleon IOB experiments has a
width parameter g°= 40 MeV/c suggesting that the major broadening occurs
rapidly above that energy. The data are summarized in Figure 5. This con-
clusion must be viawed as tentative since there may be significant differences

between 108 and 20ne projectiles.
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Experiments scheduled in the near future should allow us to suttle this
question by performing measurements in the intermediate energy range with

20Ne projectiles.
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Heavy-Ion-Induced Fission in the Rare-Earth Region
and the Statistical Models*

F. Plasil, J. R. Beene, B. Cheynis, R. L. Ferguson,
F. E. Obenshain, A. J. Sierk,t and G. R. Young
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

A. Gavron
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G. A. Petitt
Georgia State University, Atlanta, Georgia 30303

In this work we shall consider two separate aspects of heavy-ion-induceld
fission in the rare-earth region. First, we will consider fission excitation
functions and their relationship to fission barriers. Second, we will briefly
discuss results on r ‘utron emission associated with fission in the context of

the statistical deexcitation model.

A. Fission Barriers

The extraction of fission barriers and of other statistical model param-
eters from measured fission excitation functions has been an active field
of investigation in recent years.l_4 In these studies the variztion of fis-
sion barriers with angular momentum was based on results of the rotating
liquid-drop mode1.5 While the conclusions of Refs. 1-4 vary somewhat from
case to case, it wau found that, in all cases, the fission barriers that
are consistent with the data are significantly lower than the rotating
liquid-drop model predictions for the same region of angular momentum. This
basic conclusion was not surprising since more realistic calculations,6 which
take into account the diffuseness of the nuclear surface and the finite range
of the nuclear force, result in lower calculated fission barriers than those
deduced from the liguid-drop model.

L:itil recently, the more realistic calculations have been available
only for the case of zero angular momentum, and comparisons could only be
made either by means of an arbitrary extrapolation to ~=ero angular momentum3
or by means of a scaling prescription.4 In this work we make use of prelimi-

nary results of Sierk,7 who has performed the calculations as a function
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of angular momentum for a few selected cases. In these calculations the above-
mentioned corrections to the surface energies have been included, together
with corrections to the rotational energies due to the diffuseness of the
matter distribution8 as well as corrections to the Coulomb energies due to

the diffuseness of the charge distribution.8 The parametrization has been
made in terms of Legendre polynomials,9 and the shapes have been constrained
to axial symmetry as in Ref. 5.

In order to extract statistical model parameters from cross section
data, it is necessary to measure hoth fission excitation functions and excita-
tion functions for evaporation residues (ER). In Refs. 1-3 fits to such data
have been made by means of two free parame ..rs: the angular-momentum—
dependent fission barrier, Bf(J), and the ratio of the level density param-
eter for fission, a, to that for par..cle emission, a. The fits are usually
accomplished with the aid ¢* various statistical model nuclear deexcitation
computer codes. In this work, we have constrained Bf(J) to the calculated
theoretical values, and thus our fits involved only one free parameter,
af/a“. The computer code used was a modified version of JULIAN,10 into which
the calculated Bf(J) values have been incorporated.

Since our primary interest in this work involves determination of fis-
sion barriers, we have examined three cases for which measured excitation
functions extend to very low fission cross sections (£0.1 mb). Such data
are likely to provide sensitive measures of the fission barrier. The reac-

tions studied here are 20Ne + 13305 and 120 + 141Pr, both leading to the

153Tb compound nucleus,3 and 12C + 169Tm. The first two reactions are of
particular interest due to the additional constraint of requiring adequate
fits to data from both reactions with the same values of Bf(J) and of the
adjustable parameter af/av.

In Fig. 1 the calculated fission barriers are shown as a function of
angular momentum for the case of 153Tb*. The liquid-drop values are shown,

7 descrlhed above. B (J) values corres-

together with the Sierk calculations
ponding to 80% of the liquid-drop values, B (J), are also 1nd1cated In
Ref. 3 the best¢ fit to the data was obtalned with Bf(J) = 0.83 B (J)

can be seen from Fig. 1 that, in the region of angular momentum in which
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the competition between fission and particle emission is the strongest (near
10 MeV), the Bf(J) = 0,8 BfLD(J) curve and thz curve depicting the Sierk
calculation are relatively close to each other. Thus we can expect an ade-
quate fit to the data of Ref. 3 with the new fission barriers. This can be
confirmed by inspecting Fig. 2, in which experimental results of Ref. 3 are
compared with our calculations. The calculated results are for .alf/a‘J = 1.075
{cf. af/av = 1.08 in Ref. 3). The hatched band indicates the range of compu-
tational uncertainties associated with the Monte Carlo calcuiation. The agree-
ment between the experimental results and the theoretical curve is reasonably
good, except at the highest excitation energies where such effects as incom—
plete fusion may cause the observed deviations.

The 120 + 16[‘)Tm fission excitation function was measured by Sikkeland.11
The excitation function for ER, however, was not available. Since the
Sikkeland fission data are very suitable for our purposes (very low fission
cross sections have been measured), we have measured12 the necessary ER cross
sections in order to b2 able to proceed with the one-parameter fit. We found
that SER = 6040 mb at 74.3-MeV vombarding energy, Ogr ~ 1000 mb at 88.1 MeV,
and Op = 1320 mb at 102.8 MeV. Our calculations are compared to Sikkeland's
measurements in Fig. 3. The value of af/a“ giving the fit shown was 1.04.

We conclude that, for the limited number of cases we have considered,
the calculations presented here adequately represent the experimental observa-
tions and that our calculated fissior barriers appear to be valid in this
region of the nuclear mass table. It was pointed out by Blannz’4 that arbi-
trary extrapolation of empirical Bf values to zero angular momentum may not
be valid. Evidence for this can be szen in Fig. 1, where the Bf = 0.8 BfLD
curve and the curve depicting the Sierk barriers intersect the zero angular
momentum axis at very different energies. However, wi: feel that, for the
first time, we have reasonable theoretical guidance as to how to make this
extrapolation. Keeping in mind the above reservations, we may state that the
data considered here are consistent with Bf values of 28.90 MeV for 15‘—’Tb and

19.03 MeV for ]8]Re, exclusive of any possible shell corrections.
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B. Neutron Emission

Neutron emission associated with fission fragments has been reported

in Ref. 13 for 192-MeV 12¢ + 158G4 and 176-Mev and 239-Mev Z%Ne + 15%Na

It was reported that for the C reaction and for the lower energy Ne reaction,
most of the neutron emission precedes fission. It was also thought that for
the 239-MeV Ne bombardment, the situation changes dramatically and that most
of the neutrons are emitted from the fragments. As a result of a follow-up
experiment,14 we discovered an error in the analysis of the 239-MeV data,

and this conclusion turned out to be erroneous. Thus, we believe that in

all cases investigated, most of the neutrons are emitted rrior to fission.
This conclusion is inconsistent with statistical model calculations (see

I'ig. 3 of Ref. 13). We may speculate, however, that the observed large pre-
fission neutron emission is due in part to e¢mission from the compound nucleus
prior to fission and in part to emission from the neck, or some other region,
during the scission process. Experimentally, it is not possible to distin-

guish between the two alternate sources of neutrons.
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The Pauli blocking is an important effect in describing a wide range of
phenomena, such as inelastic scattering of an interacting particle (w,n,p,
etc.) from a nucleus, propagation of a particle in nuclear matter” and mass
transfer in heavy ion collisions”. We discuss here some preliminary results
for the Pauli suppression factor P(q) in finite nuclei, using the harmonic
oscillator (HO) model and comparing them to those obtained using the Fermi
gas (FG) model, We derive an expression for P(q) in terms of the Wigner
transform (WT) of the one-body density, which simplifies the calculation of
P(q) for the HO model.

Within the independent particle model, the response of the nucleus to
the projectile scattering probe 0(d,#) is given by

S(q,E) = 4,f [<¥;[o]¥>|? 8(E-E -E)

z< v; |o*o]¥s>

where Y¥; and Yg are accupied and unaccupied single particle states,
respectively. The Pauli blocking factor is given byl

®(gi = [ S{q,E) dE. (2)

In the case of no Pauli blocking (<?j 0|¥4> = 0 for occupied states) we
have P(g) = 1. Let us first consider the Born approximation for 0(q,r),

+ +
q.r

O[E,g) = el {Born approx.) {3)

kd > >
where g = k - k' is the momentum transfer. The denominator in (1) gives the
nucleon numEer A. The Wigner transform (WT) which corresponds to a wave
function ¥(r) is defined by

L
£(2.0 = (i2m? [ ad &'PrS yw(Eidsa) wid-3/2). (4

Using the definition {4) one finds that

net@ = f<¥ifolep|? = [ af @B £ (F, 4D £c(F ), (5)



68

where fi(;,s) and ff(;,g) correspord to ‘l’i(;) and ‘l’f(;), respectively.
tUsing (1), (2) and (3), we obtain for P(g) in (5) the result,

Pa) =% [ & & rp (23D 11 - @n? rad D, t6)

4

where F (r,p) is the WT of the one-body density p(r,r') = Zl*!l'-(r) \1' (r').
It is remarkable that (6) is of the form that one may write down for P(q),
assuming that FA(r:p) is a phase space distribution fuaction (:.n the
classical sense). It should be pointed out, however, that Fh(r,p) may
acquire negative values in certain regions.

In the Fermi gas model one has

F(Ep) = at172m? etpd - p?), 7

where pp is the Fermi momentum and the factor 4 is due to isospin-spin
degeneracy. Substituting (7) in (6) one obtains the well~known resgult,

(8}

.2
Pq) = {(3/4) 3 :1 x</12) x<2

x>2

where x = g/pp. For the HO model we make use of the result®

FIE,P) = g ngE (£eB) = | n (4773 (=) Ye %2120, 9

where ny is the occupation nunber of the major shell K, Lg(x) is the
asgociated Laguerre pclynomial and € is a dimensionless energy, ¢ = p“/v +
ve? = 2E/hw, with v = mu/l. Using (9), we can reduce the calculation of (5)
to a one dimensional integral which is evaluate? numerically., Fig. 1 shows
the calculated P(gq) for Fermi gas {pg= 1.37 fm ) model and for HO model with
A = 16 and 224, respectively. Since the HO model describes the nuclear
surface more realistically than the FG model, it is quite iateresting to note
from Fig. 1 that for low momentum transfer g, the HO resules for P(q) are
smaller than the corresponding FG values.

Very recent analysis of forward angle of inelastic scattering of protons
with E>200 MeV from nuclei indicates® that for low g, the values of P(q)
obtained from (8) are too small to explain the data. A similar conclusion is
obtained? from time dependent Hartree Fock (TDHF) calculations of mass
transfer between heavy ions colliding at low energy (E/A~1-2 MeV). The
results presented in Fig., 1 show that this is dque to the Born approximation
adopted in Eq. (3) for the probe operator 0(q,r}. In fact, significant
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enhancement in P{qg)}, for low gq, is found when the distorted wave Eorn
approximation (DWBA) with an optical potential V(r) + iW(r) is adopted to
obtain the probe operator O.

*Supported in part by the National Science Foundation under contract

PHY-8109010
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7. %
MASS AND CHARGE DISTRIBUTIONS IN THE REACTIONS OF 4003 AND 2ogBi WITH 3/C1 t

A. C. Mignerey and A. Gkmen
Department of Chemistry

University of Maryland, College Park, Maryland 20742

H. Brever
Department of Physics and Astronomy
University of Maryland, College Park, Maryland 20742

K. L. Wolf, R, R, Betts, C. Davids, and B. G. Glagola
Argonne National Laboratory
Argonne, Illinois 60439

V. E. Viola
Department of Chemistry
Indiana University, Bloomington, Indiana 47405

The deep-inelastic reaction follows the evolution of a heavy-lon reaction
system from products with quasielastic energies down to Coulomb energies cor-
responding to large deformations in the exit channel. The processes of charge-
to-mass equilibration, nucleon exchange and relaxation of the mass asymmetry
degree of frerdom are intimately related to the conversion of the initial kinetic
energy Iinto iaternal excitation of the target and projectile. To better under-
stand this transition, simultaneous charge and mass distributions have been

measured as a fumction of total kinetic energy loss (TKELOSS) for the systems

40ca + gy ar ELab(37C£) = 270 and 221 MeV and 2?81 + Ycp ae &, (*Tce) = 270 mev
37 %0ca of 1.18 and 1.0,

The near symmetric system has N/Z ratios of the ~'C% and

respectively, while the N/Z ratio of 2OBBi 15 1.52. The total kinetic energy

above tlhe entrance channel Coulomb barrier is ~ 95 MeV for the 270 MeV 37C£ on

“Oca, & 85 MeV for the 270 MeV 37C2 on 29%B1 and ~ 65 MeV for the 221 Mev 'z
n 40C 37C£ beams from the Argonne Super-

o a. The experiment was performed using

conducting LINAC to bombard thin, self-supporting, isotopically pure targets

of 40Ca and 209Bi. Charge and mass identification of the projectile-like fragments

was achieved with two solid state detector AE-E time-of-flight telescope with
flight paths of ~» 65 cm each. The resolution was § 0.5 mass and charge units
over the range of products observed, with an energy resolution of ~ 1 MeV. The

angles at which data were taken with the 40Ca target were 8° and 13° for 270 MeV

37C1, the latter being near the grazing angle, and 13° for 221 MeV 3702, which is

several degrees forward of the grazing angle. The two angles measured with

the 20931 target were hoth in the vicinity of the grazing angle, 44° and 48°,
The measured product distributions are approximately Gaussian in the N-Z

plane. The evaporaticu residue contribution to the AOCa + 37C£ reaction is

*Work supported by the United States Department of Energy.

Support of the University of Maryland Computer Science Center is ;ratefully

acknowledged,
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cleanly separated at both bombarding energles, however sequential fission of
the 20931 becomes a problem at energy losses near the Coulomb barrier. The
conversion from laboratory emergies to total kimetic energy (TKE) included a
correction for the energy removed by particle evaporation, assuming the exci-
tation energy 1s divided according to the mass of the fragments. No correction
was made in the mass or charge of the measured fragments, since, especially in
the 40Ca + 37CZ reaction, both neutron and proton evaporation are probable. This
is very important for the isobaric charge distributions but has a smaller effect
on the widths of the overall mass and charge distributions.

:ue majority of available data on charge and mass distributions do not go
below ~ 30-40 MeV of TKELOSS

goals of this work was to investigate the initial energy lsss mechanism, suf-

and are in coarse energy bins. Since one of the

ficient statistics were taken to allow cuts in 2-5 MeV wide TKE bins. The excel-
lent energy, mass and charge resolution #llowed analysis of data to within 3 MeV
of the elastic energy. The two-dimensional MN--Z distributions were analyzed via
a tw.-dimensional Gaussian of the form
- _ w32 5 32 ~ _
P = h exp [a(X No) + b(Z ZO) + 2¢(N NO)(Z ZO)L

For each TKE cut, six parameters describe the data: a normalization h, the

LOSS
centroids N0 and Z0 and a, b, and ¢ representing the varlances ans covariance.
The following provide the explicit relationships between a, b and c and the
quantities discussed.l)
Z_b
o, Y
2_a
% Y
ci=y(a+b+2c) Y=a-b—c2
2 _ 1
UZ(A) " a+b+2c
c
[o} = 0, = ¥Yc
Nz Ja b Nz
The variances of the charge di.itributions ag are plotted in Fig. 1 as a
function of TKE for the reacticn AOCa + ”701 at the two hombarding energies.

LOSS
The results obtained at 8° and ..  for the 270 MeV energy are identical, further

verifying the conclusion that mass and charge distributions are a function of

TXE1 055
in the vicinity of the Coulomb barrier but are very similar in the first 35 MeV

4
This is consistent with the results obtained for the 1l”Sm + BAKr

and independent of angle. The widths are quite broad at energy losses

of TKELOSS'

system at 720, 595 and 470 MeV. 1In fact, the results for the 470 MeV case fall

37

on the curveZ)defined by the 270 MeV CR data. These data are in contrast to
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209 37

Bi + "'CR system which maintains a very narrow
distribution, similar to that obtained in the 209Bi + 56Fe system,3)

the results obtained for the
reaching a
variance of only ~ 1.4 at 60 MeV of TKELOSS’

The correlation coefficient p defined as uﬁz/(uN-cz) provides a means of
measuring the correlation between the exchange of neutrons and protons. A p=0
implies independent motion while p=1 gives completely correlated transfer. The
correlation coefficient for the two energiles in the 40Ca + 37CE reaction are
not significantly different. Therzfore only pLhe coefficients for the 270 MeV

data are plotted as a function of TRE in Fig. 2. 1Initially the reaction

LOSS
shows a small amount of anticorrelated exchange which slowly increases to approach-

ing the fully correlated limit at large TKE The anticorrelation may i--..lve

an initial aligoment of the N/Z ratio alonngzz potential energy surface. This
effect is expected to be stronger in the very asymmetric system 20951 + 3701,
towever experimental verification of this 1s not yet available. The ratio »f
the neutron to proton variance cﬁ/c% shows that initially the neutron exchange
dominates with ratlos approaching 3 for 5-10 MeV of emergy loss. This ratio
rapidly decreases and rezches an equilibrium value at high energy losses.

The variances of the isobaric charge distributions u;(A) for the 40Ca + 37C2
reaction are shown in Figs. 3 and 4. Those presented in Fig. 3 have been averaged
over all A values by the two-dimensional Gaussian procedure. Figure 4 shows
the results f a moment analysis to individual A cuts. The widths are consider-
ably narrower than those obtained for heavier systems. The problems of particle
evaporation are very important for the lighter systems. The decrease in width
at about 20 MeV of TKELOSS

decay channeling the secondary products along the valley of stability. The
209, . 37
Bi +

the 37C£—like fragment receives a very small fraction of the total excitation

can be, at least partially, attributed to the particle

Ce system 1s expected to be less affected by this since, on the average,

energy. It is belleved that the primary dis’:lbutions are quite narrow in
these reactions and much narrower than for the Fe-induced reactions.l) However,
it is cautioned tha% any quantitative conclusions regarding the saturation of
the variances must awalt the results of further calculations and possibly
experiments to determine the widths of the excitation energy divisions in these
reactions.

The results presented here represent only a portion of results from data
analysis still in progress. Interested read:rs are invited to contact the

authors for further information.
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Deuteron Production in High Energy Heavy lon Collisions*
M. Gyulassy, E. Remler, K. Frankel

Nuclear Science Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

L to the production of

We Apply the Wigner density formalism of Remler
deuterons in nuclear collisions. The theory is based on the intranuciear
cascade model, which follows the space-momentum trajectories of all

particles. The starting point is the transition rate formula
Pip(t) = = § Trap,lUqp,e(t)] (M

for particles 1 and 2 to scatter into a bound state characterized by the
density matrix, Plo- In eq. (1) p(t) is the full A-body density matrix
and Uyp = Z(V]i + V21) for i 23 is the interaction potential of

particles 1 and 2 with the remainder of the system. As we are interested
in the classical limit, we evaluate the trace in the Wigner representation.

In the classical Timit,

A 3,3 o ayted _
TPty i) = T ) - F(0180 - B0 (@)

in terms of the classical trajectories Yi(t) and ﬁi(t). The Wigner

transform of the commutator in eq. (1) simplifies in the classical limit to

P | 2 A -+ >
g Wygely =<2 2 T VO xRy - Byley s (3)

The final expression for the transition rate is

= FuVp + Fo.0p. 0 oY
P12 §§3{F1j' Py * oy pz} P12(X1Ps%pP ) (4)

in terms of the Wigner transform, »?2, of the bound density matrix

- -
and the classical forces Fij = - in-v(xi - xJ).
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Intranuclear cascade provides a particular simple example of eqs.
(2,4). The forces are impulses at discrete times ti' The integrated
probability for deuteron production is then simply given by2
b . N (24P 3 oy e .
12 S5 SRS - () P 1)Ko Ir(i).a(1)] - sylr(+1) (D) (5)

where r{i) = x](t:l) - XZ(t‘i)’ q(i) = p'l(t'i te) - Dz(ti +te) ,

and rﬁ(r,q) + 8 exn(-rzld2 - qzdz) for a Gaussian deuteron wave-

function (d % 2.1 fm).

The brackets <..,» denote an ensemble average over many cascade
events. We have performed the first calculations based on eq. {5) using
Cugnon's cascade code. The results are shown in Fig. 1 for the reactions
400 MeV/A Ne + U and 400 MeV/A Ar -~ Ca (Sandoval, et a1.3). We show
the cascade results for both the primordial sum charges and the
deuterons. For the deuterons we compare both to the free deuteron data
(dots) and also tc the "primordial" deuteron data {solid triangles) which
are important at small angles and low energy. It is necessary to compare
to the primordial deuteron distribution because the total number of
deuteron like correlated (n,p) pairs includes those bound in heavier
fragments. We take the primordial distribution to be primordial deuterons
=04t 3/2 (°t + aHe3) + 30Heq, when we sum over experimental

data. The results show the sum charges and primordial deuterons are well

accounted for for deuteron energies 2 20 MeV/A.
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In figure two we show t.e results for 400 MeV Ne + U taken with a
high mltiplicity trigger4. We use an impact parameter cutoff of bmax
= 2.1 fm, which has been adjusted to obtain the best fit. We show results
for sum charges and primordial deuterons, which for this experiment contain
only deuterons and tritons.

An important qualitative resuit that was obtained is that the unbound
proton inclusive distributions can be largely modified from the summed
charges inclusive yields due to deuteron production. In particular, for
central collisions, the cascade code predicts a forward enhancement of the
total yield. However, in the forward direction the phase space density is
high and therefore most nucleons emerge as bound fragments. This
nucleosynthesis process depletes the free proton spectra at forward
angles. We are investigating whether the observed forward proton
suppression is due to this mechanism as opposed to the hydrodynamic flow

mechanisms.

This work was supported by the Directer, Off ice of Enerqy Research,
Division of Nuclear Physics of the Office of High Energy and Nuclear

Physics of the U.S. Department of Energy under Contract DE-AC03-75SF00093.
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Fig. 1 Comparison of charge inclusive data (dots) ((a) and (c)) with
calculations (solid lines}. In (b} and (d) the primordial
deuteron distribution {lines) is compared to data (solid
triangles}. The free deuteron data are indicated by dots.

Fig. 2 Comparison between theory (lines) and sum charges {dots) and

primordial deuterons {triangles) for impact parameters bs2.1 fm.



mb/srMeV/A

do/dadE/A

78

400 MevV/A Ne+U 400

MeV/A
T

Ar+Co

Fig. 1

'OO. .1.- 1 L Y 1 ) 1 3
\"_\30
101
1.}V
O.iF  sum charges T y
[l | -1 A (A) -1 L L _L(c,
Y T T T 3 T .y T
"deuterons"
A
10. |
1.k
S
O_I =t o. -
150
A (8)
1 g 1 1 ] | A |
0 160 200 O 100 200
ENERGY PER NUCLEON MeVv/A



do/dQdE/A mb/srMeV/A

100.

79

400MeV/A Ne+U (HIGH MULT)

} | A E L

sum charges

[

J - (]
Rl ] L]

"deuterons"”

| i ] L
0 100 200
MeV/A



80

Flow of huclear Matter in Heavy lon Collisions

M. Gyulassy, K. Frankel, and H. Stocker

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

Inclusive measurements have been unable to tell us whether hydrodynamics
g¢r intranuclear cascade provide a better moadel of high energy nucleus nucleus
coliisicna. If we were to observe reactions where hydrodynamics is valid,
then we would expect to observe collective flow of colliding nuclear matter.
This might be expected to occur in reactions of heavy nuclei at small impact
parameters. We propose a new method of global analysis to help test Tor

hydrodynamic flow in nuclear collision$

Consider the kinetic flow tensor]
F* = P (v) P (v) f2m = fq e eT +f, e, ez++ fqyeq e3+ (1)
obtained by summing aver the momenta of all fragments v on an event by event
basis. The kinetic flow tensor has the advantages that it gives a full 3
dime.;sional description of the event, gives the correct weight to composites
and the trace is fixed by energy conservation. The eigenvalues fi and

eigenvectars e; are analytic function of Fij‘ Furthermore, the aspect
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ratios fi/fj and flow angles ei are insensitive to missed particles
(neutrons). The flow tensor characterizes an event as a 3 dimensional
ellipsoid in momentum spate with principal axes oriented a.nong éi and radii

fF;T In the case of a peripheral collision we expec’ a prolate spheroid
oriented 'ong the beam direction. In a central col7 'sion, we would expect an
oblate spheroid if hydrodynamics is valid.

Fig. 1 shows a typical charge exclusive event for 400 MeV/nucleon Ca +
Ca. as measured by the plastic ba]]-wa112. The momenta of all particles are
projected on the plane spanned by the beam axis and the principal axis é],
corresponding to maximum kinetic flow. The oriented ellipse that is
determined by the flow analysis is also indicated. This event shows a finite
deflection % Tow % 19° and corresponds to an ellipse with aspect ratios
a/b=3. Also shown in figure © is a flow diagram, where 8 £1ow is plotted
versus f1/f3=(a/b)2. We show results for the flow analysis using the
Cugnon cascade code3 (shaded region) and usiug the non-viscous hydrodynamics
mode14 for 400 A MeV U+U. We observe that the hydrodynamic predictions show
much more "flow" (enhanced f1/f3 for a given ef1ow) as compared to
cascade. MWe note that flow analysis is sensitive to detector acceptance and
Coulomb final state effects.

We have also investigated how the cascade code has to be alterad in order
to simulate the hydrodynamic flow. We have found that by running mass 2000 on
2000 the cascade flow remains close to the U+U curve and hence cascade does
not converge to non-viscous hydrodynamics at large A. We also tried to make
the nucleon-nucleon mean free path shorter (ceff > oNN) to see if we could
simulate hydrodynamic flow but this also nad little effect. We next tried to

see if the flow was sensitive to NN scattering style. In most cascade codes



82

the scattering angles (6,¢) are taken randomly from NN free space cross
sections. We tested the effect of imposing correlations between the relative
momentum transfer, §, and distance, ¥, at the poir . of scattering. With oug¢
= GNN we found Tittle effect, but with Taff > Cog WE find considerable
dependence on scattering style. With o .. = 3oy, and 470 {(repulsive
potential) scattering style we found that cascade flow became similar to the
non-visdous hydrodynamic flow shown in Fig. 1,

This work was supported by the Director, Office of Energy Research,

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics

of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
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Flow diagram for 238,238y 41 apo MeV/nucleon. Insert shows cne
Ca+Ca (400 MeV/nucleon) event measured in the plastic ball. The
dots represent measured and reflected momenta (about Pc_m. = 0)
projected in the plane spanned by the beam axis and the principal
axis ey. The flow angle are plotted versus the kinetic flow ratio
is (f]/f3) = (a/b):Z . For ihe event shown a/b = 3, a =1

Gev/c, 8y, = 19°. The solid curve shows the results of
nonviscous hydrndynamics4. The shaded region shows the results
using intranuclear cascade). The numbers along the curve indicate

the impact parameter b in units of bmax/10.
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Complete Events in Medium-Energy Nuclear Collisions*

George F4i and Jérgen Randrup

Nuclear Science Division,Lawrence Berkeley Laboratory
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Recent developments in accelerator capability and detection technique
have made it possible to obtain good-quality nearly exclusive data on
multi-fragmentation processes in medium-energy collisions of heavy nuclei. A
major objective of such undertakings i: fthe search for peculiar structures in
the individual event patterns, which may signal the occurrence of interesting
reaction mechanisms, such as collective side-splashes or nuclear shadowing.
Due to the finite multiplicity of fragments in a given event, the
many-particle observables are associated with rather large fluctuations, and
the identification of any structure, and the assessment of its significance,
is therefore a delicate task.

Until now, no model has been able to yield sufficiently realistic
exclusive events. One contender is the intra-nuclear ~ -. ~de model, but it
suffers from the drawback of yielding only elementary . .;nents (nucleons and
pions) but not automatically composite nuclei. Another is the nuclear
fluid-dynamical model, which, with appropriate augmentations, may yield
composite fragments, but it is void of statistical fluctuations, which play an
important role in practice.

As a first step towards a theory of exclusive reactions, we have found it
of value to develop a model that invokes a minimum number of dynamical
assumptions. Being conceptually simple, as well as practically manageable,
this model provides a useful reference against which the significance of
possible signals can be tested.

The work is still in progress and in this workshop contribution only some
of the aspects will be dealt with., We focus on how a highly excited nuclear
system disassembles into ¥inal observable fragments. In the complete theory
tge probability for such systems to be formed in a given collisfon is also
addressed.

The disassembling system (or the initial state, or the scurce) is
characterized by the following conserved quantitie%: its baryon number A,
its charge number Z,, and its four-momentum iy = (P, Fg); we denote
these quantities co?1ective1y by ig. Following the idialization introduced
in ref. [2], the disassembly is assumed to proceed in two stages: First a
quick explosion produces excited nuclear fragments according to the available
microcanonical phase space. Suhsaquently, on a longer time scale, these
primary fragments deexcite, first bty nucleon and c-evaporation, later on by v-
decay, ultimately leading to tte observed multi-fragment state.

The main novelty of the model is the calculation (in a suitable approxi-
mation) of the complete microcanonical many-fragment distribution function,
rather than merely the one-fragment inclusive distributions. Thus, the
calculated many-fragment states consistently incorporate the conservation laws.
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With the statistical assumption, the exclusive probability for exploding
into a given final many-fragment state f is given by

pliglf) ~ 8(i, - ilf]) (1)
where i[f] denotes the values of the conserved quantities associated with the
state f: Af, Zf, Pf. The normalization constant in (1) is determined
by the condition

} pligIf) =1 (2)

The distribution function p(iy|f) corresponds to an exclusive
measurement where the complete final state f is observed. If only some of the
final fragments are observed, say f, then the corresponding inclusive
probability is given by
pliglf) = }'_‘,~ p(i,If} (3)

where the summation includes all final states f that encompass the abserved
partial event f.

in general, a given final state f can be decomposed into =2 collection of
one-fragment states {fi}, k € (1, v¢) where vf is the multiplicity of
fragments in f. It is then possible (see ref. [3]) to factorize the exclusivz
probability p into a product of one-fragment inclusive probabilities,

Y
f
P(ilf) = T Bl qlf) 2l 10 a)

Here ik = iy _7 - i[fi] and P(ik.7]fk) is the inclusive probability
that a source characterized by the conserved quantities k.7 explades into
any final state containing the specified one-fragment state fi.

The above Factorization (4) is well suited for a statistical (Monte
Carlo) generation of a sample of events representative of the exclusive
distribution (i.e. a sample of events f determined randomly according to the
probability distribution p(ig|f}}. This can be done by first determining
f1 on the basis of the inclusive distribution p(iy[f1): then determining
fo on the basis of the modified inclusive distribution p(iy = ig -
iff]][fg); and so on until no source is left.

This procedure would yield the exact multi-fragment distribution
function. However, the evaluation of the microcanonical inclusive
distributions is cumbersome and impractical. Therefore, we have adopted the
approximation of replacing each of the inclusive probabilities in (4) by its
grand canonical equivalent, truncated at the limits set by the corresponding
s.urce (so that no fragment can have A or E exceeding that of the state from
which it is ejected).

The grand canonical treatiment is described in refs [1,2]. [t involves
the evaluation of the grand partition function

5 o B (Br e viTe) 5)

f

Z[ik] =
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where Tf = Ag/2 - Zf is the isospin projection of the event f. The
Lagrange multipliers Bxukvk appropriate for the particular source iy are
determined from the constraints:
<Af> = Ak’ <Zf> = Zk’ <Ef> = Ek (6)

This approximation method proves to be quantitatively satisfactory (see
ref, [3] for a detailed demonstration of this). It enables us to produce
reasonably sized samples of multi-fraumentation events. (It should be added
that subsequent to its formation during the explosive stage, each fragment is
subjected to an evaporation treatment as described in ref. [2], so that the
observed events contain only stable fragments.)

Events produced by the statistical model provide a useful testing ground
for the various analysis schemes aimed at identifying peculiar structures in
the emission patterns: Any searc for specific dynamical effects ought to
turn out negative for statistical events. This reauirement can provide
valuable guidance for developing the most suitable selection criteria. In
this connection, it is an essentizl feature of the model that it contains the
statistical fluctuations arising from the relative smallness of the
multiplicity v (finite particle number effects). Thus, as an example, even
though the statistical model produces isotropic event patterns on the average
(i.e. when many separate events are superimposed), each individual event
usually exhibits substantial deviations from isotropy. This is clearly borne
out by the illustration.

ITlustration of event shapes

For this iTlustration we consider the disassembly intc nucleons only
(i.e. no composite fragments or pions are allowed). In order to obtain a
global impression of an event f one may consider the Lorentz tensor

v,
NV (TR
- é] PPy f2 M (7)

where Pk is the four-momentum component of the kth ejectile. Following
GyuTassy et al. [4], we consider the spatial part (in the CM frame of f)

2 v, > > >
f, = k;; B B ram = TR + 52, + 4E, (8)

where the eigenvectors Eg have been labeled so that 0 < t4 <;t5 - t3.
The three eigenvectors define an ellipsoid characterizing the distribution of
ejectile momenta. In the present illustration ¥g focus on the shape of this
ellipsoid (since its overall size, given by tr T, is approximately the same
for all events and its spatial orientation is entirely random in the
statistical model).
aeneralizing the standard description of triaxial shapes (see ref. [5]),
we employ the polar coordinates (B,Y) given by
_ ¢ 16m 2 1/2 o
. B'["‘S"(cz“c]c3)] E(O:)
(9)
¢,-C
y=tan ' 2V e (g,
C3
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where ¢ = En(t /to) with t§ = tytat3.

R =4, 2 =0
€ = 40 Mev

(100 events})

0.0 0.2 .4 0.6

Spheroidal deformation 8

The figure displays the positions in the (B,v) shape plane of 100 events
characterized by Ay = 40, Z4 = 20, €5 = 40 MeV. We observe an o
approximately equa? division between prolate (v € (0,%)) and oblate (v € (gvg))
shapes. Due to the small sample size (N = 100 events), there are large
fluctuations in the distribution of points. An important question is how the
limiting distribution (N ~ =) luoks - it is clearly not uniform as a function
of B (it seems to peak around B = 0.5), possibly not even as a function of Y
(there seems to be some enhancement of truly triaxial shapes (y = 7/6)). An
important task in the event analysis is the development of representations in
which trivial dynamics (such as is assumed in the statistical model) gives
rise to trivial distributions (i.e. without intriguing structures). Tt is
therefore worthwhile noting that even though the 1imiting statistical event
(A; + =) has a spherical pattern, actual events, with their relatively small
multiplicity, tend to exhibit large deviations from symmetry; this might be
deceiving in the search for peculiar structure.

Finally, it should be noted that for nearly oblate shapes (y =~ 7/3), the
event pattern has approximate symmetry around the 1-axis (rather than the
3-axis) and one might wish to take account of this featurz iu the possible
further analysis of the event.

*This work was supported by the Director, Office of Energy Research, Division
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the
U.S. Department of Energy under Contract DE-AC03-76SF00098.
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PARTICLE PRODUCTIONS IN HIGH-ENERGY, HEAVY-ION REACTIONS®

Cheuk-Yin Wong
Oak Ridge National Laboratory
tak Ridge, TN 37830

Abstract

Results of Blankenbecler, et al. for hadron-nucleus collisions
arz generalized to heavy-ion collisions. Explicit expressions re-
iating nucleon-nucleon to nucleus-nucleus partial cross sections are
given.

d* o ok K

Recently, Blankenbecler, et al.! pointed out some unusual shadowing effects
in particle production of nuclei in a hadron-nucleus collision at high ener-
gies. The condition for an arbitrarily defined cross section to be shadowed
only by itself is given. Explicit expressions relating the nucleon-nucleon to
hadron-nucleus partial cross sections were put fort“.. Examples were presented
to illustrate the cases of interest.

We would like to generalize these results for hadron-nucleus collisions to
heavy-ion ccllisions. We consider the scattering of a nucleus of atomic number
A with a nucleus of atomic number 3. The total cross section a:Et in the
Glauber theory? is given by

(b)
Mo - (1 - ey (1)

where the cross section ot without a superscript refers to that for nucleon-
nucleon collisions. The profile function T(b) for heavy-ion collision is

related tc the nucleon-nucleon profile function t(B) by

T(E) = f daida‘j t[s'si"'sj)pA[ai)pB[aj) 2)

*Resrarch spons&FEﬁ by the Division of Basic Energy Sciences, U.S. Department of
Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.
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where 51 is the transverse component of q1 and the density functions and the
profile functions are normalized according to

[ 48 0p(@) = [ d3 0p(@) = [ db T(B) = J dB t(B) = 1. (3)

Following Chou and Yang,? we shall take t(B) to be a real function. In conse-
quence, T{b) is also a real function.

The results of Eq. (1) indicate that for small mass numbers, u?gt = AB 9ot

. 2 . X
while for large mass numbers uAB ~ 2nr 2(AL/3 + BY/3)°, vapious versions of
. (1)% were found to agree well with experimental measurements of heavy-ion
total cross sections.

The result of Eq. (1) can be written in a different form

T(b)at £\" T(b)ot t AB-n
m-”dﬁnil(ﬁ“)( 2)(1 7 @

Such an expansion provides a physical interpretation for each term. The general
term (T(b)vtot/z)n (1 - Tatot/Z)AB'" represents the contribution from a physical
process in which there are n basic nucleon-nucleon collisions and AB-n "misses"
in the A x B encounters of the nucleons in the colliding nuclei. With the asso-
ciation of a physical process to each of the mathematical terms, mathematical
expressions for different types of physical process can be conversely genera-
ted.!

We consider a "self-shadowing" (SS) criterion C such that the observation of
a non-C event in heavy-ion collisions comes from the occurrence of non-C events
in all basic nuclean-nucleon collisions.! We can decomposz the basic total
nucleon-nucleon cross section into the C-channel and non-C channel cross sec-

tions with different prefile functions t (E) and t (b)

t(B)o, , = tC(E)cC + tN(B)vN (5)

tot

where t. and t, are normalized in the same way &as t. The cross section for the
observation of the C events in heavy-ion reactions is then

Ty(b)og\n T(b)a, . \AB-n
o = opoy - 2 db Z (ﬁB)( oy N) (1 tOt) (6)
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which leads to
T.(b}aAB
oéB=2deil-[l--—c GC]E ™)

with T. (and Ty) defined in terms of t; (and tN) a~ in Eq. (2).

Many types of measurements satisfy the SS criterion. Examples are given in
Ref. 1. For instance, the production of at least one particle of type P at a
rapidity (or momestum) range satisfies the SS criterion. The mass dependence of

aéB uepends on the range and the elementary production cross section. If they
are small, then aéB ~ ABoc and if they are Targe, then aéB ~ (A1/3 + 81/3)2.

particular, when the range is chosen to be infinitesimal, we have

In

doéB doC
dy A dy” (®)
and
dop? dog
E——=M E-p. (9)
dp dp

These equations relate the differential cross sections for heavy-‘on collisions
to those in nucleon-nucleon collisions. Equation (9) is approximately satisfied
for n° producticn at lurge p- in a-a collisions at a center-of-mass energy of

125 GevV.® Similar relations for the integrated cross section have been pointed
out previously.?s8

We can also write down in a similar way the partial cross section for the
observation of events satisfying two different SS criteria C and D. We decom-
pose the basic cross section as

t(b)atot = tCD(b)aCD + tc(b)cC + tD(b)aD + tN(b)aN.
Then, the cross section for the observation of events satisfying both C and D

criteria is

oy = 2 J db [+ B - v] (10)

where
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a=1-1{1-[Tob)ogy + Tlblogls2}e
8=1-{1 - [Teylblogy + Ty(blopl/2} 8
v =11 - [Tplblogy * Telblo + Tp(baplrz}e,

and TC’ TD’ and TCD are obtained from tc, tD’ and tCD as in Eq.‘ {2). Examples
of measurements satisfying two SS criteria have been given in Ref. 1. For in-
stance, C {and D) contains events in which at Teast one particle of type P {(and
Q) are observed in a rapidity interval fp (and fQ)' Different mass depen-

dences will be obtained depending on the product AB, the sizes of \fp and ‘fQ’

as well as the magnitude of Ies Ops and Sep* For an infinitesimal interval, we
have from Eq. (10)

g;:gy-r (AB+POK) = AB So2 (WNoPOX)
(11)
AB(AB-1) (1 do (o ooy G0 pvowy 1 rdZg oo
+ B {nR,Z dy (MP) e (WK - ooy [qygye (WNPQOT')
where
“R:Z = [ db T(B) T,(B)
and
oz dB (@)%

Clearly, such a relation is also true for the invariant cross sections.

_The results we have presented are obtained in the Glauber theory without
taking into account the absorption and the rescattering of produced particles
and the Fermi motion of the nucleons. At high energies above 10 GeV per
nucleon, particles are essentially produced outside the nucleus.?® The incident
momentum 1S also so high that the Fermi motion may be neglected. Thus, the re-
sults we have obtained should be a good approximation for high-energy, heavy-
ion reactions such as those conducted at the Intersecting Storage Ring of CERN.
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On the other hand, to apply these results to lower energies, it is necessary to
correct for the effects of Fermi motion, the absorption and the rescattering of
particles produced.

The author is indebted to Prof. R. Blankenbecler for stimulating discussions
and helpful suggestions. Hez also weuld like to thank Prof. T. T. Chou for help-
ful discussions.
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Quantum description of the heavy-ion collision process
P. Danielewicz*
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

There is a common belief that the high-energy heavy-ion collisions may be
described classically. Is, however, the classical description really
appropriate for the collisions? At the initial stage of an Elab > 200
MeV/nucleon ion-collision, the mean time T between successive NN collisions is
of the order of 1/(noov) ~ (1,7-3.5) fm/c. The value of T implies
uncertainties of nucleon energies in subseguent collisions h/t % (65-115) MeV.
In the course of an ion collision, still higher values of the collision
frequency h/t may be achieved. At the beam energies E]?b < BOO Mev/nucleon,
the nucleons will have energies smaller than 200 MeV, in the equal
ion-velocity frame, during the whole course of a collision. This indicates
that quantum effects may be expected in the jon collision dynamics at these
beam energies, because the uncertainty in nucleon energies is comparable with
the energies.

Quantum effects may be even expected at much higher energies - in cases
when strong kinematical restrictions occur, e.g. in the production or
absorption of particles.

This paper examines the role of quantum dynamics in high-energy nuclear
collisions. We have carried numerical calculations of collisions in an
interpenetrating nuclear-matter mode1]). The quantum dynamics has been
compared to a classical Markovian dynamics given by the Boltzmann ea.ation.

In quantum calculations, methods of nonequilibrium Green's functions have been
employed.

Nonequilibrium Green's function methods, which had teen initiated by
Kadanoff and Baymz), have been already proposed3) to extend the TDHMF method
for low-energy nuclear collisions. The basic quantities of the approach are
the 1-particle Green's functions

-16°(x,t.x ", t") = <u‘»;(5',t’)¢|.,(5,t)> >
16706t ", t1) = Bu(x,0R(x" 1>,

*On leave of absence from Institute of Theoretical Physics, Warsaw University,
Warsaw, Poland.
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with the expectation values taken with respect to some initial state at time
to. For equal time-arguments the function -i6< is the 1-particle density
matrix.

The 1-particle Green's functions satisfy the Kadanoff and Baym equations
of motion

2
v > >
(:' 3%" + '2%)6<(11]') = fdxz ZHF (5],§2:t]) G<(§2,t]!].)

t'l >
o I e - 90,2 6d2an
t
0
t1. :
- S e fa. e - e
0

and the self-energies I may be evaluated in terms of l1-particle Green's
functions, with Feynman diagrams similar to the conventional ground-state
Feynman diagrams. The second-order diagram, corresponding to the direct Born
scattering with the particles of the medium, yields

> >
2,11 = faxy Jdxp Vi - %) ¥ (xqe - ) 6 (1,10)

2 s
X 6 (EZ’t]’EZ"t]') G (52|,t1|,§21t]) ’

where V is the 2-body potential.

In the limit of slow macroscopic space and time variations in the system,
as compared with chezracteristic momenta and energies in the system, the
Boltzmann equation

(57 + B+ %) FoRT) = -1 25(paupRaTIY - FLpR,TY)
+ 357 (pouy R,T) FlRRLTY

for the evolution of the Wigner function f, may be derived from the Kadanoff
and Baym equations. Here 22 are Fourier transformed in their relative
variables at fixed values of sums of the variables, and w = p2/2m. In

the Boltzmann equation limit, -3z and iz’ are seen as the scattering-in and
scattering-out (collision frequency) rates, respectively, The characteristic
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time of changes in the Eystem is, within the Bolizmann equation, set basically
by the scattering~out rate.

Both the Green’'s function equations of motion and the Boltzmann equation
have been solved for an interpenetrating nuclear-matters system. The
Boltzmann eqguation has been solved earlier for such a system by Randrup4).

T+~ self-energies in the calculation have been approximated by the direct Born
term with the parameters of the potential fitted (within'the Born
approximation) to the NN differential cross sections.

The gquantum calculations have been performed both for a two Fermi-spheras
Hartree-Fock initial state and a correlated initial state of nuclear matter.
The correlated initial state was prepared by an imaginary-time evolution
described in Ref. 1.

Results of the calculations for E]ab = 400 MeV/nucleon are presented in
Figs. 1 and 2. 1In Fig. 1 the time evolutions of the nucleon momentum
distributions are shown. In the distributions resulting from the Boltzmann
equation, the effects of energy conservation in binary collisions can be
seen, The particles fill initially a hollow shell in momentum space,
determined by the two Fermi spheres, and they cannot substantially popuiate
the high momenta region. In quantum calculations the particles move directly
into the central region between the Fermi spheres and they also spread over
the whole momentum space. In contrast to what one could expect from the
above, the approach to the thermodynamic equiiibrium is slower by about 50% in
the quantum case. This has to be attributed to the memory effects in the
quantum evolution. In Fig. 2 the evolution of the momentum distribution
anisotropy is depicted. 1In the correlated initizl-state quantum calculation a
value 1/2 for the anisotropy is achieved only after 10 fm/c of the evolution.
The value of the time seems too large to justify the hydrodynamic description
for the heavy-ion collisions at the considered beam energy.

This work was supported by the Director, Office of Energy Research,
Division of Nuclear Physics of the Office of High Energy and Nuclear Physics
of the U.S. Department of Energy under Contract DE-AC03-765F00098.
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Figure Captions

Fig. 1.

Fig. 2.

Evolution of the nucleon momentum distribution f(pl,pz,t)). Upper
figures ~ Boltzmann equation evolution; central figures - Green's
function equations of motion evolution for a two Fermi spheres
Hartree-Fock initial state; bottom figures - evolution for a
correlated initial state. Horizontal axes are the collision axes.
The momentum space is restricted to 900 MeV/c as shown by the
outer circles.

Evolution of the momentum distribution anisotropy. Short-dashed
Tine correspends to the Boltzmann egquation, long-dashed Tine to the
Green's function equation of motion and the Hartree-Fock initial
state, and the =al1id Tine to the correlated initial state. The
dashed horizontal line at 0.5 is a guide to the eye representing
%> = 1.5 (9Pr2).
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A PHYSICALLY ASYMPTOTTIC HARTREE-FOCK STATIONARY-PHASE APPROXTMANT
TO THE MANY-BODY S-MATRIXT

James J. Griffin* and M. Dworzecka

Department of Physics and Astronomy
University of Maryland, College Park, Maryland 20742 U.S.A.

In recent years, mean field theories of many-body reaction processes have
been the objects of much analysis, at first of a mostly numerical,1 but more
recently of a structural? Time-Dependent S-Matrix Hartree-Fock (TDSHF) and
formal3 Functional Integral Stationary Phase (FISP) type. For bound eigenstates,
Gauge-Invariant Periodic Quantized (GIPQ) solutions emerged simultaneously and
independently from the two distinct methodological and philosophical approaches.%»>3
The explicit development of GIPQ states as time-dependent alternatives to RPA
stationary states has also begun.®

For continuum processes, however, the TDSHF approach yields a different
description from the FISP formulation. The former assumes that Dirac's Time-
Dependent Hartree-Fock theory’ defines the time evolution of all the single-
determinantal wave finctions which it encompasses. It leads to the conclusion
that by judicious choice of channel states, and by invoking time averaging as
an interpretative procedure, the TDSHF reaction theory can be obtained, which
exhibits the physically indispensable qualitative structural features of the
exact Schridinger scattering theory.?

The approach from functional integrals derives from the exact expression
for each S-matrix element a stationary phase approximant, which 1s essentially
different from the corresponding TDSHF-approximate S-matrix element. In partic-
ular, to describe an N-channel scattering problem, TDSHF requirzs only N distinct
TDHF solutions, and correspondingly, N-TDHF mean fields, pj(x,t). For the same
problem, the FISP approach determines N(N-1)/2 distinct mean fields, oif(x,t),
since ea~h depends upon both the initial and final states. Furthermore,
these fields describe non—-causal time evolution (because the development of
gg{ at any time, t, depends upon boundary conditions imposed upon the behavior
at times both infinite future and infinite past), in contrast with the causal
Dirac TDHF evolution? upon which TDSHF is based.

Here we focus on the FISP method's lack of physical asymptoticity, which
property guarantees that the predictions for all physical measurements made at
preat distances will be independent of the precise location of the apparatus.
We note that a recent illustrative calculation® proposes a formulation of the
FISP method which seems to circumvent the lack of asymptoticity, but its impli-
cations are not carried through to a physical statement about the predictions
for measurements at distant points. When they are, we believe, it becomes clear
that the alternative formulation circumvents the computational instabilities of
non-asymptoticity, but not the physical non-asymptoticity of the measurable
predictions. This point is currently a subject of communication with these
authors.

Since asymptoticity has been explicitly structured into the TDSHF theory

by an explicit choice of the allowed asymptotic chamnel states, we here propose
a new "Asymptotic Hartree-Fock Stationary Phase" (AHFSP) approximant to the

tResearch supported by the U. S. Department of Energy.
*and Institute for Physical Sciences and Technology, University of Maryland.
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S matrix, obtained by imposing these assumptions about the asymptotic channel
states also upon the FISP S-matrix theory. The result 1s a new S-matrix approx-
imant which exhibits physical asymptoticity, but in which FISP, rather than Dirac
TDHF, determines the time evolution description during the collision interval.

Consider the S-matrix element for the aystem, H = Hy s +V; = Ho’f-kvf,
gilven exactly by the expression, *

Sg, = <Els|1> = <\y§') (':?,tc)lwf") Goe )

= :i"l <flUO,f(tO,t)U(t,tc)U(tc,-t)Uo,i(—t,to)Ii>, (12)
independent of the comparison time, t.. In (la) the asymptotic channel "in" and
“out" states are specified at t=t(, and propagated to large |t| via Up y and Up,g.
Also, products of the propagators U in (la) compose according to the identity,

U(t,tc)U(tc,—t) = U(t,-t). {1b)

The new HFSP approximant is obtained from (la) by utilizing the FISP pro-
cedure to approximate the evolution operator, U(T,T1), only during the collision
interval, (T1,T3). For times outside the collision interval, the asymptotic
channel states evalve via ULDHF(t,t') according to the Dirac TDHF equation, and
are required to be products of well-separated sub-determinantal clusters, each
of which describes a Gauge Invariant Periodic oscillation of the internal
cluster structure, and translates in space along the selected asymptotic chammel
orbit. Titese conditions are discussed in detail in Ref. 2b, In this way,
physical asymptoticity is guaranteed when the internal GIPQ solutions are interpreted
via a time average (the specific nature of which is suggested by a recent study
of exact GIPQ states?).

Then, instead of the FISP approximate result,® given by
FISP _ SP FISP FISP .
g1 = Sffi <f[U§Tf (£, £}V (e,-6)05 5 ( t,to)[1>, (2)
one calculates the Asymptotic Hartree-Fock Stationary Phase (AHFSP) approximant,

AHFSP _ _ . TOHF TDHF FISP TDHF ... __ . TDH
Se1 —tLil;II; <f|u0’f (£, )V (E.T,)V (T, T U (T, t)Uo’i

Throyghout, the superscript, FISP, on U (or Up) indicates that the propagator is
to be evaluated by the Functional Integral Stationary Phase approximation®; whereas
the superscript, TDHF, implies the use of the causal Dirac-TDNF time evolution.’

Fert,eg 1. (3)

The time interval (T3,Tp) in (3) is specifically chosen to be the smailest
interval which includes all times during which any interaction between the two
clusters is non-zero. Therefore, outside of this interval, all matrix elements
of the interaction Vi (or Vg) vanish identically, and the complete TDHF propa-
gator reduces to the unperturbed propagator, which relates the unperturbed solu-
tion at any time to the solution, B, specified at some particular time (here, tg)
by means of a dynamically trivial spatial translation. Then

JIDHF,, , - IDHF
LB (t',t) = UO,B (c',t), %)

and (3} reduces to

AHFSP _ _ . TDHF TDHF FISP TDHF TDHF

S_. = - - i

1 tL_l;n; <ij0,f (to,t)UO,f (£,T,)U (TZ,TI)UO’i (T, ”“o,i ( t,:0)|1> (5a)
- TDHF FISP TDHF
z Li '
tL:; <8 ,UO,f (£5,T,)U (TZ,Tl)UO’i (1).tg) 8> (5b)

FISP

=<« &y (v @t e G ) (5¢)
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Here ]d: )(x T1)> denotes the TDSHF cnaanel state which fo~ -» <t <Ty assunen
the controlled form 1 labelled by a set of numbers, {i}. This set just suf E1ce52b
to initialize lfb'm}? the TDHF propagator for Hp, at time t=tgy and, thereby, the
asymptotic behavior of the channel state,

Lia o) ¢ ) - UooF (e, ) |15 (6

(Likewise for <s(” )(z 'r,)] )

We note that for an N-channel problem the computation of UHSP(T',:,T]_) by
the stationary phase functional integral method will still invoive N(N-1);2
mean fields, 03§(7), defined for T; <t <T;. Nevertheless, the new structure of
expression (5¢) invites a direct compariscn with the time-averaged approximate
S-matrix element of the TDSHF theory,2 given by the following average ovor the
same interval (T1,T2):

= T.
R sz @O @ en ol G e, (7a)

7,1 j SRTER BY1 i N )UTDHF(t',T1)|¢i+)(;,1‘1)>dt'. (7b)

One sees that in contrast with S}:IS of Bq. (2), botu STDSHF in (7) and »‘E‘FSP

in (5) are affected by nontriviai dynanical behavior an{y during the collision
interval, and by the boundary conditjons at its endpoints T;,T;. Moreover, each
of these boundary conditions is direcily obtained via the dynamically trivial
Dirac-TDHF translational evolution from a "controlled" single-channel asymptotic
state at an early (or a late) time. This structure therefore guarantces prima
facie that the S matrix is not being distorted b{ spurious external muiti~cross-
channel correlations in the asymptotic regions.1? In contrast, SFISP in (2) is
influenced by itc physically nontrivial dynamical evolution “or all times,

-®w <t <+, and is based upon solutions which approach no well-defined limit

as [t| increases indefinitely.

In summary, the Auymptotic Hartree-Fock Approximant (5) replacee the paysically
non-asymptotic (and dynamically nontrivial) external translation of the FISP result
(2) with the asymptotic and dynamically trivial translational evolution of Dirac-
TDHF by adding an explicit restriction upon the acceptable channel states. It
is therefore preferable under the principle of commensurability,l® which judges
the expected output of physical descriptions in terms of the physical assumptions
they incorporate. We expect that further insight into the relationship between
the TDSHF and FISP methods will reward caraful comparison of thke respective
expressions (5) and (7) in specific cases.
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Feynman's path integral method” 2 a1 though being impractical for
numerical applizations proved very successful for deriving general results
on coupled quantum system:;2'3. Mohring and Smil:.nuki3, for instance, used
this method in ordex to treat quite generally dissipative ztocesses with a
view on deep inelascic heavy ion collisions. Brink et al.“ employei statis-
tical matrix elements and derived transport coec.ficiznts. In the spirit of
ref.3, in the present paper we use the adiabatic approximation to calculate
transport coefficients - which turn cut to be the aame as derived by time-
dependent perturbaticn theory and calculate the influence functional, effecilve
Lagrangian and action. Due to rhe present lack of communication with the
first authors home country, hnowever, the paper is still fragmentary.

In following the notation of ref.a, the inclusive probability for a
transition of a collective variable Q, from Q, = Q(t~0) to Q;= Q(t=T) under
tbe influence of a classical Lagrangian L.(Q,Q) coupled to an intrinsic
system with coordinates £ by the coupling operator V(£,Q} is given by

r(.0) = J{orel il 7@, exp 1G,@ - 5,@). m

n .
Herein, D[Q]} D[,Q] denotes integration over all possible paths with boundary
conditions Q(0)=0(0)=Q, anc Q(T)= %(T) = Q;, the classical action iz given by

T
5.@ = 7 1 @a @
and the influence functional F(Q,‘(lz') is given by the influence phase ¢(Q,a),
FQ,O = exp i 60,0, 3
W, T t
,Q = dt dsi Vv )—V((t))]
s -1 1f fo s[ L@ - v (&
-iE_(t~s) iE_(t-s) 5
x[e v -2t v den)| @

* Supported by Alexander von HRumboldt-foundation and by Deutsche
Forschungsgemeinschaft.
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Here and in the following we set & = 1 and use unit collective mass, Ep
denotes intrinsic excitations from the ground state with E, = 0 and v, (Q(e))
is the matrix element of V(E,Q) connecting the ground state and the n-th
excited intrinsic state.

Eq. (4) is now evaluated for a separable coupling V(E,Q) = V(£)Q in the
adiabatic approximation E,(t-s) >>1 to yield

Y T Ny
¢(Q,Q) =L atfq(e) - Q(v)] )

2 < a
x [5— @® + §w)- @ + Ao + 2@ - §o)+ 1a@e) - c‘z’(:))]

In eq. (5), the transport coefficients, Kz = potential correction,

Y = friction constant, D = dissipative diffusion constant and d = conservative
diffusion constant, turn out to be the same as those derived via time~depen-—
dent perturbation theory?,

2

25|V |2/

2t L |V |2 8(Ep) /B,

Mz Vn2 S§(En)

£lv, 2722, )

Y
D
d

With the help of egs. (1,3-5) we can deduce an efrective Lagrangian
o~ . ’ [
Leff(Q,Q) = $(Q,Q * SC(Q) - SC(Q), ©)]

which, for force free and harmonically oscillating motion with frequency (,
ws = W< - K4, becomes

_le2 %20 1 =22 A2
Lo =3@ - -3 F@ -
. o [
- L9 (0 + @O + 14 - H (G-, ®

With the help of eqs (1,8), the inclusive probability can then be written
entirely in terms of the collective coordinate,

v

p(q,,q) = [forl pldT exp 1 5,..(0 3, ©)

fodd

where Seff is defined analogously to eq. (2).

It remains to express S £ in terms of the starting and =nd points
Q> Q'. This is most easily &6te by going over to the "relative” and "center-
of-mass" variables

N
x=0+0, Q

y=Q-
x = x(0), x = x(1), Y, = ¥(0), y, =yD,

(10)
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with the Lagrangian

1 .- - ) ¢ . .
L{x,¥) =35 xy -%m Xy - 3 YRy + 1.Dy2 + 1dy§ (11)

and the equations of motion

X + 0% + YK = 4iDy
j+eay -yi=o. 2)

Without going into the details of the solutions of (12) we give the final
result

I’
Q t/2 =Yt /2
= — I_(xoyo+xlyl) cos Nt - (yox] ML %, e Y )] + %(xoyo-xlyl)

S =
eff 2 sin Nt

. 2
+ 1D l-(y2 - y2) + X8 <2y y, cosh I (y2+y2) cos Qt)
~2 |2 1 o N 0’1 2 o ‘1
Y& sin Qt

2 92 sinh XE hi3 -

4
2 (yZ e 2 - 2y y, cos Ot + y? e )], 13)

ol

sin® Ot °

whare QZ = 'mz - Yzll» . The limit & + 0 in (13) gives the force free motion

result.

Work is under way to evaluate the inclusive probability (9) with the
effective action (13) along the lines of ref.3 by the saddle point method.
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RHI and TDHF : THE EVOLUTION OF THE TARGET
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Several models of high-energy collisions separate the role of the
nucleons of the colliding systems in participants and spectators. Let us
say roughly that under certain geometrical conditions (mainly the radius
of the colliding ruclei and the impact parameter) the projectile pulls a
cylindrical hole out of the target. At this stage the remaining nucleons
of the target and/or of the projectile are calied the spectators, and the
compound system of the colliding nucleons constitutes the participants.
The participants have been studied by several methods like the fireball
(1) or the cascade (Z) model. An opposite point of view is taken up by
the knock-out model (B) whick attributes the observed nucleons to a direct
emission occurring at the coilision of the nuclei. The experimental data
lie between the limits set by the predictions of the two theories which
may be considered as an indication that both theories are realistic up to
a certain degree.

However, if the participants are well descrited in these models, very
little is known about the spectators. On the experimental level this is
due to the fact that the detection of these very low energy residues asso-
ciated with a good signature for the impact parameter renders the ir forma-
tion difficult to extract.

On the theoretical le 7el, and as far as high energy collicions are
concerned, we can surmise that the process of the target evolves on two
steps. First a rapid abrasion occurs with little or no Einetic energy
deposit. This seems reasonable provided that the transit time of the pro-
jectile through the target nucleus is significantly smaller than the pro-
pagation time of the disturbance inside the nucleus. Secondly the highly
excited remaining target proceeds to emit particles or fragments. In a
fully consistent theory one should have tc treat the two stages on the
same way. A step in_this direction has been niade by Amsden et al.(3) who
treated the 20Ne + 238y collision, at very high energies, on the frame-
work of a relativistic hydrodynamic picture. Although une could question
the use of the hydrodynamic approach at such high energies, these ralcu-
lations provide a fair insight into the global collision process.

In this paper we propose a quite different approach to the same question.
Namely we focus our interest on the disintegration of the excited target once
the projectile has bore a hole through it. The approach used here is the TDHF
method (4). The initial conditions, for the time evolution of the system,
correspond to a perforated in nucleus. In order to achieve this, we multiply
the wave functions by a cylindrical Fermi-type cut-off factor with small
thickness, the radius of which is roughly equal to the radius of the projectile.
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We have preferred this type of smooth cut-off instead of a sharp step func-
tion one because it ensures the cylindrical shape of the hole, independently
of the coarseness of the mesh, and does not lead into problem as far as the
kinetic energy operator is concerned. We proceed further to orthogonalize
the wave functions, but do not normalize them. The wave fumction orthogona-
lity is essential if one wishes to evolve them according to the equaticn

i@ = he, which is the method used here.

Let us just remark here that at the high energies we are considering
the incident nucleons perform a small numher of collisions (5) before leaving
the target. At these energies the nucleon-nucleon cross sections are very
much forward peaked and therefore we deal with straight line trajectories
and tha cylindrical picture appears reasonable.

The wave functions obtained are subsequently evolved according to the
TDHF equations. For this we have made a standard choice of the nuclear inter-
actions as in Ref.(6), consisting in a contact force plus direct Yukawa and
Coulomb interaction. The last one is umderstood to act between protons and
neutrons equally, with an effective charge of 1/2, which results in a four-
fold degeneracy of the single particle states. This leads to the following
expression for the energy fumctional (with evident notations) :

> 2 -+, .
E = f dr ’Z‘_m -r(r]+-§ t, pz(—f)+1—16 tz ps(r)

+ =V I dr dr' p(r) -—kl—‘l———l—l" / D(T') (] l‘dl' dr’ (4 T) p(r')
[N .
2 o > +,|/ +-8- J > +‘I

The evolution of the TDHF equations is performed #s described in Ref.
(6). The wave functions are discretized in a box of 7?2 fmx 22 fmx 16 fm on
a cubic mesh whose step size is taken equal to 1 Zin. One has to use a full
three-dimensional geometry for this kind of study with even total reflection
symmetry relaxed. The only remaining symmetry is an one plane reflection one
which allows to reduce the dimensions of the box to 22 fmx 22 fmx & fm. The
time step used in the evolution of the TDHF equations is 0.6 1023 sec.

In this letter we report the first results obtained with this method
for a target nucleus of 40Ca. The extension to heavier targets which are
of greater interest from the experimental point of view is not impossible
in principle (although the technical difficulties associated with that are
considerable) and is currently wnder investigation.

In the figure we display snapshots at selected tumes during the evo-
lution of the residual nucleus, obtained through the creation of a 3 fin
radius hole on a 40Ca target (which roughly corresponds to the hole that
an 160 projectile would punch in the target nucleus). Three different
impact parameters are examined b=0 for a central collision and b=1.5 and
2.5 fm for peripheral col'isions. The graphic corresponds to density
integrated along the axis perpendicular to the plane of the drawing, which
axis corresponds to the direction of the beum.

In order to have an estimation of the evaporation we have decided to
count the mmber of nucleons through an integration of the density outside
a sphere centered around the nucleus with a radius of 5 fm. It is clear
that in the TDHF case that we are studying, due to the symmetries we have
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imposed and to the semi-classical nature of the TDHF solutions, a coherent
emission of particles with definite particle number is not to be expected.
At the beginning of the evolution less than 0.5 particles lie outside this
sphere, corresponding to the tails of the wavefunctions. The visualization
of the evaporation is achieved by following a very low density contour.

The line numbered 1 in the snapshots corresponds to a density of 0.01 fm-2,
and its evolution can be associated to the edge of the outgoing matter wave.
An estimation of the velocity of the latter can be obtained by calculating
the displacement of the low density contour hetween two subsequent snapshots.

i) Central collision~ : an almost complate evaporation of the nucleus seems
to occur in this case. The hole in the mucleus is filled up and at the same
time the outgoing motion of matter dzpletes the center of the frame. As a
result a very low density residue remains, with density lower than 0.1 fm=2
which corresponds to our second density contour. The evaporation proceeds
further as can be judged hy the motion of the very low density contour,
until at the very last frame, edge effects due to finite size of our box
start becoming appreciable. In the average a total number of 2.5 particles
is emitted (after correction for the initial 0.5 particles lying outside
the sphere). Although apparently small, this number represents roughly 40 %
of the total available at the begimning of the deexcitation.

The picture of tutal break up, usually advocated in the case of central
collisions and presciit in the case of relativistic hydrodyramic calculations
(3), is still present in this two stage description of the collision.

ii) Peripheral collisions : as in the case of the central collisions we
first observe a fast filling-up of the crescent-like hole. In this case the
matter velocity which characterizes this motion is larger than in all the
other cases : roughly 20% of the velocity of light, to be compared with a
value of less than 10% in all the other cases. On the contrary the number
of emitted particles is smaller than in the central case. Although 2.-2.5
particles are still emitted they represent no more than 25 % of the initially
available matter.

A subsequent evolution of the remaining low density residue shows that
it is still excited, and part of this excitation is manifesting itself in
collective excitations of the 'bending” type.

As a conclusion, we can state that the TDHF has proven itself a useful
tool in the exploration of a new kind of collective motion which is of
particular interest in the realm of relativistic heavy-ion physics. The
simple model examined here is compatible with the main features of 3HI
collisions : fast collision with perforation of the target and fireball
formalism sometimes followed by non-equilibritm emission from the slowly
recoiling target. However, more work is needed especially in the direction
of the treatment of heavier targets.

Such an extension presents two advantages. On the first hand, it would
lead closer to the experimental situation, where heavy targets are used
almost exclusively, allowing thus a hope for eventual quantitative compari-
sons, On the other hand, the validity of the approach, from a theoretical
point of view, would incease with the mass of the target, the classical
behaviour becoming dominant for large systems. This extension is currently
investigated.
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By studying the properties of large nuclear fragments from a heavy Au
target nucleus at relativistic bombarding energies one is able to make a link
between the physics of nuclear collisions at lower,fﬂgident energies and the
fireball-type phenomena that occur in highly excited'gystems at high
projectile energy. We have studied collisions induced by orotons, alpha
particles, and Ne projectiles at total incident energies from 5 GeV to 42 Gev
leading to pieces of the Au target nucleus emerging as bound nuclei with small
velocities in the laboratory frame.

Figure 1 shows the experimental layout, consisting of heavy fragment
detectors inside a spherical vacuum chamber and plastic scintillator detectors
on the outside to count the fast charged particles emitted into the forward
hemisphere from each collision.

We first consider the small cross-section leading to fission of the Au
target residue. Figure 2 shows a contour plot of the yield of fragments in a
mass range approximately half that of the Au target. The ordinate is simply
the number of the 30 plastiz scintillators which fired in the event, the

abscissa is the kinetic energy of the fragment emerging at 90°

This work was supported by the Director, Office of Energy Research,
Division of Nuclear Physics of the Office of High Energy and Nuclear Physics
of the U,S., Department of Energy under Contract DE-AC03-765F00098.
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There are two components to the yield; the low-multifoldness high-energy
component is a conventional binary fission mechanism which occurs only in the
most peripheral collisions, the underlying deep spallation spectrum has its
origins in more violent collisions. These findings are discussed more
completely in reference 1.

For the remainder of this discussion we will examine the mechanism
leading to the production of lignter fragments (A230). Figure 3 shows the
energy spectra, observed at 6=90, for each of the different bombardments. The
similarity of the spectra is obvious. They are characterized by an
exponential tail (slope parameter T between 14 MeV and 30 MeV) and a peak
which js considered to arise from the Coulomb forces acting within the residue
of the Au target nucleus. The evidence for the Couloml: interpretation is
given in the literature2’3 but notice in figure 3 how the peak moves to
lower energies as the violence of the initial collision increases with
projectile energy, consistent with the decreasing size and charge of the
target residue. Also to ke noted (but not shown here) is the movement of the
peak to higher energies for fragments of higher Z, again as to be expected
from a Coulomb effect.

Figure 4 is from reference 4 and illustrates two distinct origins of
particles in these collisions. The hydrogen isotopes and 3He exhibit
éxponentia] spectra indicative of emission from a high temperature source.
A1l heavier species have an additional low temperature component at low
fragment energies indicating that a considerable part of the yield of such
fragments comes from a cooler source. This cooler source is essentially tha

only origin of fragments heavier than Be.
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In figure 5 the cross section for fragment production is plotted against
the fragment charge. The solid circles are measured by Nagamiya et a1.5 for
high energy products and extrapolated to obtain the total yield. In this way
the low temperature component is missed and these measurements represent only
the yield from the fireball system. The data are fitted roughly with a
statistical calculation by George Fai and dJorgen Randrup6 using £=155 Mev,
the available energy per nucleon in the hot system. Our data is shown as
solid triangles and includes the cooler component. We find that the same
calculation fits the heavier fragment data with €v20 Mev. The energy spectra
themselves show slopes of t»25 MeV which, because of finite number effects,
measure a quantity somewhat larger than the € parameter of the calculation.
Thus, the calculation of the charge yield curve seems to be consistent with
the observed slopes of the energy spectra.

More discussion of the calculation would be useful, both about the
technicel difficulties of knowing level densities in many nuclei and about the
fundamental difficulties of statistical mechanics of finite .ystems. However,
this calculation seems to provide a description of the breakup of the target
residue which does not imply a relaxed, thermalized, sequential emission of
fragments from the residual system. The excitation eneray {20 MeV/u) is too
high for this relaxed mechanism to be reasonable.

Figure 6 shows the mean multiplicity of fast charge particles associated
with fragments and with protons from collisions at various projectile
energies, Triggering on an emerging high energy proton biases the measurement
strongly towards central collisions, because it is in the most vivlent
collision that the largest number of high energy protons is produced.
Consequently, the trend shown as a solid line on the figure is that seen in

the most violent collision possible as the projectile energy is varied. The
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multiplicity associated with heavy fragments follows the same trend until the
projectile energy gets above 10 GeV. Up to this point the most violent
collisions are producing (on the average) fragments of A=10 and A=30. Above a
projectile energy of 10 GeV the fragments are no longer associated with the
most violent collisions and there are collisions occuring which are so violent
in their jnitial {fireball) stages that on the average there are no bound
nuclear systems produced with AR10.

This work was supported by the Director, 0ffice of Energy Research,
Division of Nnuclear Physics of the Office of High Energy and Nuclear Physics

of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
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Multiplicities of Slow Target Fragments
in Relativistic Heavy Ion Collisiors

H. Wieman, A. Baden, M. Freedman, H.H. Gutbrod, D.d. Henderson, S.B. Kaufman,
M. Maier, d. Peter, H.G. Ritter, E.P. Steinberg, H. Stelzer, A.i. Warwick,
F. Weik, and B.D. Wilkins

Argonne Mational Laboratory, Argonne, I1linois 60439, U.S.A.
Gesellschaft fir Schwerionenforschung, Darmstadt, West Germany
Lawrence Berkeley lLabevatory, Berl:ieley, California 94720, U.S.A.

In the interaction of relativistic 20Ne projectiies with Au target
nuclei the production of slow, light target Fragments (A = 20-40) seems to
accur in the more violent central co'l'lisions..| ingle particle irclusive
energy spectra for these light fragments suggest that a reasunable amount of
energy is deposited irn the target nucleus, suff icient energy for multiple
particle breakup of the target. In particular the energy spectra for these
Tower mass fragments have high energy tails with slopes of the order of 25
MeV, indicating an excitation of the target residue well above the nucleon
binding energy.2 Also, the peaks in the energy spectra, identified with tle
Coulomb energy, are too low to be consistent with a binary breakup of the
spectator residue.3

In the work reported here we study this more violent type ¢f reaction
involving lighter fragments. Mean multiplicities of slow, light fragments
(Z = 2-27) emitted from the same event as the measured A = 20-40 fragment have
been extracted from coincidence measurements. This information, in
conjunction with fast charged particle multiplicities, nrovides a direct
measure of target destructicn. These measurements were made using a gold
target and neon projectiles with kinetic energies of 5, 8, 21, and 42 GeV as
well as light projectiles (protons and helium-4) with 5 GeV of kinetic energy.

The apparatus used in this part of the experiment consisted of an array
of 16 silicon detectors located at approximately 90° to the beam in which the
A = 20-40 fragment was measured. An avalanche detector next to the target in
conjunction with the silicon array provided mass identification through time
of flight. In addition four ion chamber-silicon telescopes were located at
30, 62, 113, and 151 degrees relative to the beam. In these detectors
coincident lighter fragments were measured. The slow fragment multiplicities
were obtained from these coincidence measurements between the 16 detector
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silicon array and the four ion-chamber telescopes. The fast particle
multiplicities were monitored with an array of plastic scintillator paddies
covering the forward hemisphere.

Associated mean muitiplicities were extracted from the slow fragment
coincidence measurements using the following prescription. The differential
mean multiplicity of fragment 2 associated with fragment 1 is given by the
relation:

dem(xq5%p) > doy5(%75%5)  fdolxp)
X, T xdx, o

where X; represents variables Qi, Ei’ and either Zi or Ai for

fragment i, In the reactions to be considered here particle 2 is a fragment
detected in the ion chamber telescope with a charge ranging from 6 to 27, and
particle 1, the trigger particie with which particle 2 is associated, is
detected in the silicon array and has a mass range betweer ?? and 40. For
these masses and charges the singles cross section Ties within the energy
dynamic range of the detectors. The four point angular dependence for the
coincidence measurements is shown in Fig. 1 for 5 GeV Ne and 42 GeV Ne on Au.
These distributions reflect the observed singies angular distributions--fairly
isotropic for 42 GeV neon and somewhat forward peaked for 5 GeV neon., This
lack of smecial angular correlations implies that the same sort of reaction
giving rise to the singles inclusive cross sections is also responsible for
the coincidence events, i.e. the coincidence requirement does not select out a
rare or unusual type of event.

The associated multiplicity is found by extrapolating the four point
angular distribution of Fig. 1 over 4w and depends on some assumptions about
the out-of-plane dependence. Two different possible assumptions were tried,
namely symmetry about the beam and symmetry about the mass 20-40 fragment
detected at 90 degrees. The results were within 12% of simply averaging the
four points and multiplying by 4n. Consequently the mean multiplicities we
have chosen to report here are the results of this latter averaging.

In addition to measuring mean multiplicities of fragments with Z in the
range 6-27 we extended our analysis below the original design limits of the
detector telescope to Z = 2 thus introducing uncertainties in individual Z
identification due to smal) delta E signals plus possible loss of higher
energy fragments due to punch through. A comparison of our singles cross
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sections with Ne + U data4 at 2.1 GeV/u shows good agreement for the summed

cross sections from Z = 2-5, However, the large relative cross section for
4He apparently contaminates the 1ithium leading to a factor of 3 error in
this case.

In figure 2 the resulting associated mean multiplicities are shown as a
function of Z. In the region Z = 6 and above, the error bars show only
statistical uncertainties while in the region Z = 2-5 the error bars also
include the mentioned uncertainties cue to Z misidentification. Again the
trigger for these associated multiplicities is a mass 20-40 fragment at © =
90°. As shown in this plot the associated multiplicity increases rapidly with
decreasing Z value to approximately 3 for He particles. For comparison the Z
dependence of the singles cross section is also plotted. The Z dependence for
both associated mean multiplicities and the singles cross section are
essentially the same, once again demonstrating that the reactions sampled in
these coincidence measurements are the same reactions giving rise to the
inclusive cross sections. The associated multiplicities are nearly the same
for all the projectiles p, 4He, and 20Ne. This is apparent in figure 3
where the associated multiplicities are summed from Z = 2 to Z = 27, The
summed value is =6, independent of projectile mass. There also appears to be
only a small variation as the neon projectile kinetic energy changes over the
range from 5 to 42 GeV. This is particularly interesting considering that
over this energy range the associated fast particle multiplicity as measured
in the scintillator paddles varies by approximately a factor of 3 (13 fast
charged particles associated with the 5 GeV “"Ne projectile and 42 fast
charged particiles associated with the 42 GeV 20Ne projectile). Apparently
the sTow fragment associated multiplicities do not depend on the violence of
the collision, as measured by the fast particle multiplicities.

Next consider a rough examination of average mass yields in the events
tagged by a mass 20-40 fragment at 90 degrees. An cutline of the following
accounting is shown in table 1. The entry designated as slow fragment was
obtained in the following manner. Each slow fragment of charge Z is assumed
to have a mass of 2 x Z, giving a slow fragment mass yield =g, <m(Z})> 2 Z
where <m(Z)> is the mean multiplicity of charge Z fragments associated with a
mass 20-40 fragment at 90°. An additional mass of 25 is added for the average
of the mass 20-40 trigger particle. To estimate the fast charged particie
mass contribution, it is assumed that protons constitute the full multiplicity
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measured in the scintillator paddles. An estimate of the fast neutron yield
was obtained by multiplying the fast charged particie multiplicity by 1.44,
the total neutron/proton ratio. By this accounting there is a mean remaining
mass of 51 for 42 GeV neon on gold and 115 for a neon projectile of 5 GeV.
Part of this remaining mass is carried off in the form of tow energy protons
and neutrons. The threshold energy for protons in the scintillator paddies
was 25 MeV. The below threshold contribution was estimated by scaling the low
energy proton multiplicity from our measured mean helium multiplicities
according to the singles cross sections for the low-energy protons and
helium. The singles cross sections used for this purpose were taken from
measurements of Poskanzer, et a1.5 for 5.5 GeV P plus U, The resulting
estimate in this case is six protons, i.e., two times the He multiplicity.
The slow neutron multiplicity was obtained from the proton estimate using the
measured neutron/proton ratio of 4 in this energy range.6 So, the total
slow proton-neutron mass contribution comes to 30. Having accounted for mean
mass contributions from fast particles, slow target fragments, Z = 2-27, and
low-energy protons and neutrons, the remaining mass as shown in table 1 is 20
for the 42 GeV case. Part of this remaining mass should be included with
the fast particles since high-energy deuterons, tritons, and helium ions were
counted with only a proton mass in this analysis. But in any case for the
highest energy example, 42 GeV neon, the remainder is at most 20 mass units,
indicating that on the average when a mass 20-40 fragment is detected, the
target has undergone complete disintegration into light fragmer 's. At Tower
projectile energy, 5 GeV, a sizeable remainder is left, possibly in tha form
of a slow heavy fragment normally below the energy threshold of our detector.

In conclusion the average event involving a mass 20-40 fragment has a
slow fragment associated multiplicity of ~6 with half of tkese particles being
of charge 2. This remains true independent of projectile mass and energy over
the region covered in this study, namely 5 GeV protons, helium-4, and neon-20
as well as up to 42 GeV neon. The total mass involved in the reaction when
including fast charged particles, on the other hand, increases with projectile
kinetic energy. At the highest bombarding energy, 42 GeV neon, the average
event giving rise to a mass 20-40 fragment results in complete disintegration
of the target into light fragments.

This work was supported in part by the Director, Office of Energy
Research, Division of Nuclear Physics of the Office of High Ene. gy and Nuclear
Physics of the U.S. Department of Energy under Contract DE-AC03-765F00098.
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Table 1
Mass Accounting of Ne + Au Reaction

Projectile Energy (GeV) 5 8 21 42
Starting Mass 217 217 217 217
Associated Slow
Fragments Z = 2-27 45 44 37 39
Trigger Fragment 25 25 25 25
Fast Charged Particles 13 19 28 42
Fast Neutrons 29 27 40 60
Slow Protons 6 6 6 6
Slow Neutrons 24 24 24 24
21

Remainder 85 72 57
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First Experiments with the Plastic Ball
H.G. Ritter, A. Baden, H.H. Gutbrod, H. Lchner, M.R. Maier, A.M. Poskanzer,
. Renner, H. Riedesel, H. Spieler, A.I. Warwick, F. Weik, and H. Wieman

Gesellschaft fiir Schwerionenforschung
Darmstadt, Germany
and
Nuclear Science Division, Lawrence Berkeley Laboratory
University of California Berkeley, CA 94720

After two and a half years of development and construction, an electronic
4m detector has been used for the first time in studying relativistic nuclear
collisions. This detector complements the visual 4w detectors 1like emulsions,
AgC1 detectors, and the streamer chamber, which have been in use for many
years. Only the streamer chamber has the same important feature as the
Plastic Ball in being triggerable for specific event types. In a series of
experiments with beams of 20Ne, 40Ar, and 40Ca up to energies of 1.05
GeV/u, approximately three million events were measured with various trigger
conditions. In contrast to the visual detectors, these events are already
totally digitized and ready for immediate analysis. A1l multiparticle
correlations of charged particles are measured in each event and do not have
to be determined as an average quantity from two particle inclusive data.
Besides the particle identification of the hydrogen and helium isotopes, the
Plastic Ball identifies the positive pions. This makes it interesting for the
study of pion production, which sets in at around 100 MeV/u incident energy,
and has promise to shed some 1ight onto the equation of state of nuclear
matter. Besides the analysis of the data in the standard way of selections
and of single particle inclusive data, a global analysis is in progress that
should allow us to determine the reaction plane, and the event shape in phase
space.

The general Tayout of the experiment is shown in fig. 1. The Plastic
Wall, placed 6 m downstream from the target, covers the angular range from O
to 10 degrees and measures time of flight, energy loss, and position of the
reaction products. 1In addition, the inner counters serve together with the
beam counter as a trigger.

The Plastic Ball covers the region between 10 and 160 degrees, 96% of the
total solid angle. It consists of 815 detectors, where each module is a AE-E
telescope capable of identifying the hydrogen and helium isotopes and positive
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pions. The AE measurement is performed with a 4-mm thick CaF2 crystal and

the E counter is a 36-cm long plastic scintillator. Both signals are read out
by a single photomultiplier tube. Due to the different decay times of the two
scintillators, AE and E information can be separated by gating two different
ADCs at different times. The positive pions are additionally identified by
measuring the delayed n+ -+ u+ > e+ decay. A schematic drawing of the
electronics and of the timing of the different gates is shown in fig. 2.

A cluster of 13 prototype modules (a central counter and all 12
neighbors) was tested at the LAMPF low-energy pion line with monoenergetic
pions and protons. The energy response curve for protons and pions and pion
efficiencies could be measured in that experiment. In addition, the effect of
the scattering out of particles into neighboring modules could be studied. By
taking into account information from adjacent modules, this problem can be
solved nearly comp]ete]y].

Before assembling the Plastic Ball, all modules were irradiated at the
Berkeley 184" cyclotron with 400 MeV and 800 MeV . beams in order to deiermine
the high voltage for each individual photomultiplier and to measure the
characteristic response ‘of each module. A complete set of energy calibration
curves for protons and all composite particles could be obtained by
fragmenting the 800 MeV o beam in a thick target and by determining the energy
of the fragments by a time-of-flight measurement in front of the module.

Figure 3 shows the acceptance of the Plastic Ball experiment in the plane
of rapidity versus transverse momentum. In the different areas charged
particles can be identified with different quality.

For the different beam-target combinations data were taken with a
reaction (minimum bias) trigger and with a central trigger. The reiction
trigger requests that a beam particle was identified in the start detector and
that this particle lost at least one charge in a reaction with a target
nucleus. The central trigger excludes reactions where particles with beam
velocity (or higher velocity) are emitted within a forward cone of two degrees.

The analysis of the first experiments performed in June 1981 is in
progress. Calibration factors for all detectors could be extracted from the
data and test measurements so that all AE-E diagrams coincide. The quality of
the particle separation is shown in fig. 4 for the hydrogen and helium
isotopes.
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Figure 5 shows the multiplicity distribution for the reaction 800 MeV/u
Ne on Pb for the reaction trigger and for the central trigger (85% reduction
of the trigger rate), where events with low multiplicity are strongly
reduced, It is obvious that a large group of events with high multiplicity
is rejected by the central trigoer because in those reactions fast particles
are emitted in the forward direction.

Due to the ability of identifying the particles, the Plastic Ball is well
suited for investigating the emission of protons and 1ight clusters in high
energy heavy ion reactions. Such studies should yield information about the
reaction mechanism and answer the question whether composita particles come
from a thermalized source, or whether a coalescence process that only requires
closeness in phase space of the constituents, is reponsible for cluster
production. Especially the ratio of the production cross sections of
deuterons to protons has been related to the entropy in the reaction zane in
ref. 2. This proposition to determine the entropy from directly accessible
experimental results has stimuTated a vivid discussion3"5.

Figure 6 shows that for the reaction 800 MeV/u Ne on Pb the number of
protons bound in clusters increases with the multiplicity of the reaction
products and equals the number of free protons in high multiplicity events.
Consequently as shown in fig. 7 the deuteron to proton ratio increases with
multiplicity indicating that the entropy slightly decreases.

This work was supported in part by the Director, Office of Energy
Research, Division of Nuclear Physics of the Office of High Energy and Nuclear
Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
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Plostic Ball Response (based on proton stopping power)
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LBL-14153
Pjon Production from Heavy-Ion Collisions at 80-400 MeV/N

P. Hecking

Nuclear Science Division
tawrence Berkeley iaboratory
University of California
Berkeley, CA 94720
Pion multiplicities and spectra from heavy-ion collisions with
subthreshold and/or low bombarding energies of 80-400 MeV per nucleon are not
well understood. Fireball, firestreak, cascade, thermal, etc. models work
better at high energies above ~800 MeV/N. The hard-scattering model is
subsequently applied to explain the (few) existing picn production data in the
low-energy regime.
In this model, the pions are produced by single nucleon-nucleon
collisions. No clusters of nucleons, collective phenomena, pion condensation,

shock waves, etc. are considered. The pion production cross section is given

A W wot] 1 d
d_3' = "HI "coll |°NN _1_3'
P \ Pa/ NNg

™

by:

Here, ) is the (geometrical) heavy-ion cross section and Ncol] is the

number of initial nucleon-nucleon collisions, taken from a Glauber description:

© A
o1 Noott = fzﬂbdb > N P(N,b)
0 N1

P(N,b) = () PY(b) 11 - p(byAN

—<7>~t°t
- _tot “7TNN
P(b) = <o> NN
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P(N,b) is the probability that N (of A) independent projectile nucleons

scatter once: <o> is the thickness function. The average pion production

3
cross section per single nucleon-nucleon collision (; g—% is taken from

dpﬂ NN=
experimental NN» data. The center-of-mass energy of each nucleon pair is
given by the initial momentum distribution, averaged over the two Fermi
spheres, with nucleons assumed to be on shell. In this model, the Fermi
motion is crucial for subthreshold pion production.

Pauli blocking of the final state nucleons and pion reabsorption and

rescattering are included in the quantity|E 9—% . It is assumed that the
P2 /Nn
nuclei simply overlap in coordinate space and that pion production is
homogeneous in the overlap region, Pion reabsorption is determined by
momentum-dependent mean free paths, calculated in ref. [1]. The pions also
undergd multiple scattering with nucleons from both Fermi spheres. Since
nothing is known experimentally about pion-nucleon scattering in the nuclear
medium, the cross section for scattering is taken to be equal to the
absorption cross section, which is true in the 1imit of strong absorption.
Figure 1 shows a comparison of the given model with recent experimentat
results [2]. 0Older experiments [3] with Tow-momentum pions are well
reproduced as well, fig. 2: the 380 MeV data are underestimated by a factor of
2. The arigular distribution of recent low-energy data [4] seems to be weltl
reproduced, fig. 3; the total cross section of 10 ub is overestimated by a
factor of 2. However, the experimental situation is still developing, since
preliminary »°-production data [5] for the same reaction yield a total cross

section of ~60 ub.
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Figure Captions

Fig. 1. = production at eSM = 90° as a function of pion
center-of-mass energy for two bombarding energies. The
hard-scattering model {full line) is compared with the experimental

data from ref. [2].
CM

T

Fig. 2.« production at "M = 0° as a function of pion
center-of-mass energy for three bombarding energies. Data taken
from ref. [3].

Fig., 3. w+ production as a function of pion center-of-mass angle for two

kinetic energies. Data taken from ref. [4].
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DENSITY FLUCTUATIONS IN NUCLEI: CONSEQUENCES
FOR RELATIVISTIC HEAVY-ION COLLISIONS

A._HKlar and J.P. Vary

Amss Laboratory — DOE and Department of Physics
Iowa State University, Ames, Iowa 50011

The exclusive measurement of all charged particles [11 which emerge
from & relativistic heavy-ion collision provides the possibility to
observe true many-body correlations in nuclei, because the simultaneous
behavior of many nucleons is detected. In contrast with one-particle
inclusive or two-particle correlation measurements. these data can be
expected to yield more complete information on the A—particle density
matrix of the nucleus

How could possible many—body correlations appear in the nucleus?
Our common understanding of theldensitq of the nucleus is based mostly
on the knowlodge of the single-~particle density we deduce from elastic
wlectron scattering By its nature, electron scattering measures only
the behavior of a single particle in each event and the sum over events
ylelds only the one-body density. We can think of this as observing a
single particle’s behavior while averaging over the behavior of the
other particles. So, fluctuations of %1e total density around a spher-
ical or deformed mean would be smeared out. We conclude that existing
constraints on many—body correlations in nuclei are weak.

On the other hand, if thcre is a true many—body correlation, how
could it be seen in the new sxperiments planned with relativistic heavy
ions? We believe the waxclusive data obtained event-by-event will contain

the necessary information. To illustrate this we report here the results
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of a model calculation.

First, we assume that the time scale for the density fluctuations is
much longer than the time one nucleus nemds to traverse the uther. Then
we invoks the popular model of abrasion [2] where the ovarlapping matter
supplies the participants to the collision process. Thus: for our present
purposes, density excursions will influence the number of participants
coming from the projectile and target

An estimate for the timescales involved could be based on the obser-
vation of the typical frequencies for giant resonances. These 7requen-
cies fall mostly in the rangs 4Jfiw= 0A 2to 1504 % Mav. The minimum
time associated with these is T = 2w/ = 27 KAYS3 /130 = Riic/25¢c
where R is the nuclear radius taken as approximately 1.1A" |
This yields a minimum time of about BR/c and is to 2e compared with
a typical interaction time of sbout 2R/c for relativistic collisions,

We conclude there are opportunities to see these fluctuations in these
collisions.

The next question is what kind of effects couvld be observed? The
following is intended #s an illustration where we assume a conventional
form for the appearance of the fluctuations. We have calculated the
number of participants in a geometrical abrasion picture for the rela-

238y, on %, From electromagnetic properties

tivistic collision of
the one-body density is inferred to have a deformation P = 0.25. For
the purpose of thig illustration we have assumed a deformation of 0.6
and =z spherical shape as rapresentative of the excursions that the total
density may take. With deformation the numbers of projectile and target
participants then depend on the relative orientation of the two nuclei
We calculate the participunts in an oriented nucleus (signified by A

wivh the nucleon-nucleus thickness function signified by 1%(3) and

and 6,y representing the N-N total cross section via the expressions
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and equivalently for 3. By averaging over the relative orientation we
obtain the probabilitg,PA_s. that a given difference in participant number
occurs. Clearly, for equal on equal spherical nuclei this probability is
unity for zero difference in numbers of participants. For two U nuclei
deformed by O.& we obtain the result shown in the figure. We find a
broad distribution with a width of ¢ = 16, and a surprisingly long tail.
These results will be used as input ta calculate more directly abserv-
able quantities like s#xclusive momentum distributions in order to compare
with planned experiments.
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Subthreshold K~ Production by Coherently
Produced @-Mesons in Nuclear Collisions

K.-H. Miller
Nuclear Science Division
Lawrence Berkeley Laboratory
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In quantum field theory mesons like the T, &, W, or+ meson are described
by fields that satisfy Klein-Gordon equations with source terms.1) These
fields do not only describe the virtual mesons inside the colliding nuclei
during a heavy ion co11ision2) but also the emission of real mesons due to
the deceleration of the nucleons during such a reaction. While the € and
Ww-mesons decay into pions that might be difficult to be detected in the
background of pions produced via decayingé&%, the ¢Lmeson has the nice
property of decaying with 47% probability into a K+K'—pair. Recently
A. Shor et a1.3) detected a surprisingly large number of subthreshold K~
mesons in the reaction 2851-2851 at 2.1 GeV/nucleon. If one tries to
explain these K™-mesons by the nucleon-nucleon K~ production cross section
in the impulse approximation one underpredicts the measured cross section by a
factor of 30.

We shall show in this contribution that there exists the possibility that
these K™-mesons are created via coherently produced *-mesons.

The equation that describes the vector meson + of mass m+ coupling to the

nucleon current is in the Lorentz gauge:

(D +m; ) 4>P(3?,t) = ‘34, \T’-(R“,t) X’r Y(X,t) (1)
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Y is the nucleon field and g+ the coupling constant.
To determine the number h.‘? of +-mesons with momentum K and polarization &
emitted in a heavy ion collision we first assume the recoupling of the
¢-rad1‘at1‘on to the source to be negligible and second that the nucleons move
on classical trajectories so that the nucleon current ‘-f;‘l'becomes a

c-number. We obtain
9% @ = 2
@ __L_' peo = I (2)
Ny *orm v dr(K,E)

&

Here Jr is the Fourier transformed current, Up(d) the polarization vector, £
the on-shell energy of the +-meson and41 a normalization volume. Including
the decay of the * into a relative p-state K+K'-pair, we obtain the

following invariant cross section for K~ production.

2
d's _47 2 dx N T
ngdrdn-(”_), 3+PH> TE_E M(F,x)lu Jr,L(K'E)' 3

T is the c.m. momentum and € the c.m. energy of the K;-meson. wd(ﬁ,'lb is
the probability per invariant phase space interval iE&that the decaying+
produces a X~ of momentum 'p‘ The nucleon current depends of course on the
impact parameter b.

If we restrict the momenta of the produced *-mesons to momenta whose
wavelengths are larger than the size of the reaction zone (Kél.‘i fm']) we
can talk about coherent ¢-meson production and the production mechanism
depends only on the average participant single nucleon density and not on the
intrinsic granulate structure. This restricts the c.m., momentum of the

K™-meson to a maximum valug of about 300 MeV/c.




For the nucleon current we choose a simple fireball type of
parametrization. During the initial stage of penetration the participant
nucleon distribution is approximated by the sum of two Gaussian functions
approaching with a certain velocity. After complete overlap is reéched the
Gaussian participant distribution starts to expand corresponding to nucleans
whose velocities obey a Maxwell distribution. The temperature chosen is that
given by the experimental proton spectrum. Figure 1 shows the predicted
invariant K™ -production cross section of Eq. {(3) in comparison with the
experimental value. The solid curve shows the case where we assumed a
constant velocity of the two penetrating Gaussian distributions, namely
the initial velocity. The dashed curve one gets taking into account
fluctuations in the number of participants due to binomial distributions.
Figure 2 displays the predicted subthreshold K -invariant cross section
at pET = 60 MeV/c and ¥ = 0° at different bombarding energies. Even at
1 GeV/nucleon a large number of K -mesons are to be expected.

We have demonstrated that there is the possibility of coherent ¢-meson
production in nuclear collisions. The interesting aspect of this model is
that one can learn about the nuclear dynamics ju(i,t) by measuring more
extensively subthreshold K -mesons at small momenta.

This work was supported by the Deutsche Forschungsgemeinschaft, West
Germany, and by the Director, Office of Energy Research, Division of Nuclear
Physics of the Office of High Energy and Nuclear Physics of the U.S.
Department of Energy under Contract DE-AC03-76SF00098.



142

YR 2.!6:%

iop.

2 3
e 2
30
204
]
104
PET [ MeV/e] ., .
K E/n [6GeV]
Fig. 1 Fig. 2

References

1) J.D. Walecka, Ann. Phys. 83 (1974) 491

2) K.-H. Mutler, Nucl. Phys. A372 (1981) 459

3) A. Shor, et al., submitted to Phys. Rev. lett.






