Modeling of Electro-deposition and Mechanical Stability at Li Metal/Solid Electrolyte Interface during Plating in Solid-State Batteries
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Modeling of Electro-deposition and Mechanical Stability at Li Metal/Solid Electrolyte Interface during Plating in Solid-State Batteries

Abstract

Interfacial deposition stability between Li metal and a solid electrolyte (SE) is important in preventing interfacial contact loss, mechanical fracture, and dendrite growth in Li-metal solid-state batteries (SSB). In this work, we investigate the deposition and mechanical stability at the Li metal/SE interface and its consequences (such as SE fracture and contact loss). A wide range of contributing factors are investigated, such as charge and mass transfer kinetics, the plasticity of Li metal and fracture of the SE, and the applied stack pressure. We quantify the effect of the ionic conductivity of the SE, the exchange current density of the interfacial charge-transfer reaction and SE surface roughness on the Li deposition stability at the Li metal/SE interface. We also propose a mechanical stability window for the applied stack pressure that can prevent both contact loss and SE fracture, which can be extended to other metal-electrode (such as Sodium) SSB systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View