Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Bayesian parameter estimation for the inclusion of uncertainty in progressive damage simulation of composites.

Abstract

Despite gradual progress over the past decades, the simulation of progressive damage in composite laminates remains a challenging task, in part due to inherent uncertainties of material properties. This paper combines three computational methods - finite element analysis (FEA), machine learning and Markov Chain Monte Carlo - to estimate the probability density of FEA input parameters while accounting for the variation of mechanical properties. First, 15,000 FEA simulations of open-hole tension tests are carried out with randomly varying input parameters by applying continuum damage mechanics material models. This synthetically-generated data is then used to train and validate a neural network consisting of five hidden layers and 32 nodes per layer to develop a highly efficient surrogate model. With this surrogate model and the incorporation of statistical test data from experiments, the application of Markov Chain Monte Carlo algorithms enables Bayesian parameter estimation to learn the probability density of input parameters for the simulation of progressive damage evolution in fibre reinforced composites. This methodology is validated against various open-hole tension test geometries enabling the determination of virtual design allowables.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View