- Main
Real-Time Monitoring of Aluminum Crevice Corrosion and Its Inhibition by Vanadates with Multiple Beam Interferometry in a Surface Forces Apparatus
Abstract
Crevice corrosion (CC) of metals remains a serious concern for structural materials. Yet a real-time in situ visualization of corrosion, and its inhibition within a confined geometry, remains challenging. Here, we present how multiple-beam interferometry in a Surface Forces Apparatus can be utilized to directly visualize corrosion processes in real-time and with Angstrom resolution within welldefined confinement geometries. We use atomically smooth muscovite mica surfaces to form round-shaped ∼1000 μm2 crevices on aluminum. After exposure to NaCl solutions we can detect and track active sites of aluminum corrosion within this confined geometry. CC of aluminum randomly initiates in the confined crevice mouth, where the distance between apposing surfaces is between 20-300 nm. We can directly track oxide dissolution/formation, and corrosion-rates as well as their retardation due to sodium vanadate inhibitors present in solution. Formation of a compacted oxide layer effectively inhibits CC in 5 mM NaCl solutions with 2.5 mM of added NaVO3, while inhibition rapidly breaks down at chloride concentrations above 50 mM. Breakdown of the inhibition-layers is initiated by rapid dissolution of the protective oxide within the confined zone. Our technique may be adapted for monitoring CC, corrosion inside of crack-tips, and evaluation of inhibitor efficiencies in a variety of metals.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-