Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Chelating N‐Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry

Abstract

Reported here is the chelate effect as a design principle for tuning heterogeneous catalysts for electrochemical CO2 reduction. Palladium functionalized with a chelating tris-N-heterocyclic carbene (NHC) ligand (Pd-timtmbMe ) exhibits a 32-fold increase in activity for electrochemical reduction of CO2 to C1 products with high Faradaic efficiency (FEC1 =86 %) compared to the parent unfunctionalized Pd foil (FE=23 %), and with sustained activity relative to a monodentate NHC-ligated Pd electrode (Pd-mimtmbMe ). The results highlight the contributions of the chelate effect for tailoring and maintaining reactivity at molecular-materials interfaces enabled by surface organometallic chemistry.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View