Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

In vitro atherosclerotic plaque and calcium quantitation by intravascular ultrasound and electron-beam computed tomography

Abstract

The purpose of this investigation was to compare the accuracy of intravascular ultrasound (IVUS) and electron-beam computed tomography (EBCT) in quantitating human atherosclerotic plaque and calcium. In experiment 1, 12 human atherosclerotic arterial segments were obtained at autopsy and imaged by using IVUS and EBCT. The plaque from each arterial segment was dissected and a volume measurement of the dissected plaque was obtained by water displacement. The plaque from each arterial segment was ashed at 700 degrees F, and the weight of the remaining ashes was used as an estimate of the calcium mass. In experiment II, 11 calcified arterial segments were obtained at autopsy and imaged by using IVUS at one site along the artery. A corresponding histologic cross section stained with Masson's trichrome was prepared. In experiment I, the mean plaque volume measured by water displacement was 165.3 +/- 118.4 microliters. The mean plaque volume calculated by IVUS was 166.1 +/- 114.4 microliters and correlated closely with that by water displacement (r = 0.98, p < 0.0001). The mean calcium mass measured by ashing was 19.4 +/- 15.8 mg. The mean calculated calcium mass by EBCT was 19.9 mg and correlated closely with that by ashing (r=0.98, p<0.001). The mean calculated calcium volume by IVUS was 18.6 +/- 11.2 microliters and correlated linearly with the calcium mass by ashing (r = 0.87, p < 0.0003). In experiment II, the mean cross-sectional area of the calcified matrix was 1.71 +/- 0.66 mm2 by histologic examination compared with 1.44 +/- 0.66 mm2 by IVUS. There was a good correlation between the calcified cross-sectional area by histologic examination and IVUS (r = 0.76, p < 0.007); however, IVUS may underestimate the amount of calcium present depending on the intralesional calcium morphologic characteristics. In conclusion, IVUS accurately quantitates atherosclerotic plaque volume as well as the cross-sectional area and volume of intralesional calcium, especially if the calcium is localized at the base of the plaque. IVUS underestimates the amount of calcium present because of signal drop-off when the calcium is too thick for the ultrasound to completely penetrate. In comparison, EBCT accurately quantitates calcium mass regardless of the intralesional calcium morphologic characteristics; however, EBCT does not accurately quantitate plaque volume and will miss noncalcified atherosclerotic lesions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View