Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Surface tension effects for particle settling and resuspension in viscous thin films

Abstract

We consider flow of a thin film on an incline with negatively buoyant particles. We derive a one-dimensional lubrication model, including the effect of surface tension, which is a nontrivial extension of a previous model (Murisic et al 2013 J. Fluid Mech. 717 203-31). We show that the surface tension, in the form of high order derivatives, not only regularizes the previous model as a high order diffusion, but also modifies the fluxes. As a result, it leads to a different stratification in the particle concentration along the direction perpendicular to the motion of the fluid mixture. The resulting equations are of mixed hyperbolic-parabolic type and different from the well-known lubrication theory for a clear fluid or fluid with surfactant. To study the system numerically, we formulate a semi-implicit scheme that is able to preserve the particle maximum packing fraction. We show extensive numerical results for this model including a qualitative comparison with two-dimensional laboratory experiments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View