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Electro-Tactile Stimulation 
Enhances Cochlear Implant Speech 
Recognition in Noise
Juan Huang1, Benjamin Sheffield2,3, Payton Lin4 & Fan-Gang Zeng5

For cochlear implant users, combined electro-acoustic stimulation (EAS) significantly improves the 
performance. However, there are many more users who do not have any functional residual acoustic 
hearing at low frequencies. Because tactile sensation also operates in the same low frequencies 
(<500 Hz) as the acoustic hearing in EAS, we propose electro-tactile stimulation (ETS) to improve 
cochlear implant performance. In ten cochlear implant users, a tactile aid was applied to the index finger 
that converted voice fundamental frequency into tactile vibrations. Speech recognition in noise was 
compared for cochlear implants alone and for the bimodal ETS condition. On average, ETS improved 
speech reception thresholds by 2.2 dB over cochlear implants alone. Nine of the ten subjects showed 
a positive ETS effect ranging from 0.3 to 7.0 dB, which was similar to the amount of the previously-
reported EAS benefit. The comparable results indicate similar neural mechanisms that underlie both the 
ETS and EAS effects. The positive results suggest that the complementary auditory and tactile modes 
also be used to enhance performance for normal hearing listeners and automatic speech recognition for 
machines.

Users of modern cochlear implants perform well in speech recognition tasks in quiet, but are limited in 
pitch-related tasks1–3. Electric pitch perception is limited by the electrode-to-nerve-interface, which currently 
does not provide access to low-frequency spiral ganglion neurons that are located in either the core of the audi-
tory nerve bundle or the distal side of the internal auditory canal4. For those with residual acoustic hearing at 
lower frequencies, electro-acoustic stimulation (EAS) is an effective approach to access these low-frequency neu-
rons5. The EAS combination of unintelligible low-frequency acoustic hearing and electric stimulation has been 
shown to provide a super-additive effect that improves speech recognition in noise6–9. However, the benefits of 
EAS are not readily available for those without any functional low-frequency acoustic hearing. Although pene-
trating electrodes have been previously proposed to directly access the low-frequency cells, mismatches between 
the hard electrodes and the soft tissue limits its immediate clinical application10. Here we consider an alternative 
strategy, namely, electro-tactile stimulation (ETS) that uses tactile vibrations to provide the low-frequency acous-
tic information.

Historically, tactile aids have competed with cochlear implants for providing auditory rehabilitation for those 
with profound hearing loss11–14. Modern advances in cochlear implants have now phased out the use of tac-
tile aids. However there are several reasons for reconsidering tactile aids as a complementary mode to cochlear 
implants. First, tactile sensation is a low-frequency channel that operates in the same range (<500 Hz) as the 
acoustic frequencies in the EAS approach15. Second, tactile stimulation has been shown to convey some acoustic 
information that can benefit speech recognition, lipreading, and even word acquisition16–19. Third, it is especially 
interesting to note that tactile stimulation by converting voice pitch into vibration patterns improves discrimi-
nation of speech intonation contrasts20, 21, an approach that is similar to the demonstrated role of fundamental 
frequency in the EAS benefits22, 23.
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Here we extracted the fundamental frequency of speech sentences and converted it into tactile vibrations that 
were delivered to the index finger of ten cochlear implant users. We compared speech recognition in noise with 
cochlear implants alone and with the additional tactile stimulation. On average (Fig. 1A), the speech reception 
threshold was 13.1 dB for the cochlear implant alone condition, which was significantly worse than the 10.9 dB 
for the bimodal ETS condition (size of the effect = 2.2 dB: paired t-test (9) = 2.00, p < 0.05). On an individual 
basis (Fig. 1B), except for Subject 1, who displayed worse performance with the additional tactile stimulation 
(−1.2 dB), all subjects showed improved performance from 0.3 dB (Subject 2) to 7.0 dB (Subject 10) for the 
bimodal ETS condition.

Discussion
Comparison with electro-acoustic stimulation. For EAS, the amount of potential improvement 
is known to depend on the quality of the low-frequency hearing. Under optimal EAS conditions simulated 
by normal-hearing subjects, low-frequency acoustic sounds can improve speech reception threshold by 
10–15 dB24. A similar effect has also been observed when using only the voice fundamental frequency23, 25.  
For actual EAS users, the enhancement effect was reduced to 1–5 dB26–29, likely due to impairments in resid-
ual acoustic hearing30. The present 2.2 dB ETS effect is within the range as previously reported in actual EAS 
users.

Underlying mechanisms. The similar range of improvement for both ETS and EAS suggests the involve-
ment of similar underlying mechanisms. First, ETS and EAS both utilize the same low- frequency range 
(<500 Hz). Second, compared with the auditory mode, the tactile mode produces similar intensity discrimina-
tion of 1–3 dB31 and gap detection of 10 ms32 at comfort levels. However, tactile frequency discrimination is more 
than one order of magnitude worse (~20%) compared to the 1% or less difference limen in acoustic hearing33, 34.  
In other words, tactile stimulation should only be considered as a spectrally-impaired channel for auditory infor-
mation, with a psychophysical capacity similar to the actual EAS users. Third, tactile information is known to 
integrate with auditory information throughout the auditory pathway from the cochlear nucleus to the auditory 
cortex35, 36. Finally, tactile stimulation affects auditory perception from sound detection and discrimination to 

Figure 1. (A) Average speech reception threshold (SRT) between the cochlear implant only condition (CI: 
open bar) and the combined electro-tactile stimulation (ETS: filled bar). The error bars represent one standard 
deviation of the mean. The asterisk indicates a significant improvement of the ETS condition over the CI 
condition. (B) Individual enhancement in terms of the SRT difference between the CI and ETS conditions, 
ranked from low (Subject 1) to high (Subject 10).
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speech recognition and even tinnitus generation37–40. These bimodal interactions are likely the neural basis under-
lying the present ETS effect.

Design considerations for electro-tactile stimulation. In order to provide full-spectrum information 
for speech recognition, previous tactile aids had over-ambitious goals41 with designs having multiple contacts and 
complex stimulation patterns42. In contrast, the present ETS results suggest that tactile aids should be designed 
with different goals when integrated with cochlear implants. Due to the limited tactile capacity and the proven 
fundamental frequency advantage, tactile aids only need to provide low-frequency information to convey voice 
pitch with matched tactile capacity. For instances, in speakers, such as some females and children, with a funda-
mental frequency over 200 Hz, the tactile aid can transpose the fundamental frequency to a lower frequency range 
(e.g., <200 Hz) that is the most sensitive to touch43, while providing similar enhancement of cochlear implant 
performance as shown in previous EAS studies25. Alternatively, the temporal patterns of the fundamental fre-
quency can instead be converted into spatial patterns44. Because vibrotactile and electrotactile modes have both 
shown similar perceptual capacity45, future studies may consider the delivery of electrotactile stimulation as an 
integrated tactile aid and cochlear implant option. Finally, tactile aids can be incorporated in future human and 
machine interface systems46–48.

Methods
Subjects. Ten cochlear implant subjects participated in this study, including 7 females, and 3 males with ages 
ranging from 35 to 82 years old. The subjects used either a Nucleus device (Cochlear Ltd., Sydney, Australia) or a 
Clarion device (Advanced Bionics Corp. Valencia, CA). They had over one year of experience with their respec-
tive devices and performed well on HINT sentences in quiet (82 ± 5% correct recognition scores). The subjects 
had an unaided air-conduction threshold that was greater than 80 dB HL at octave frequencies from 125 Hz to 
8000 Hz. All subjects signed an informed consent approved by the University of California Irvine Institutional 
Review Board (IRB) and were paid for their participation in the study. The IRB approved the experimental pro-
tocol used in the present study, ensuring compliance with federal regulations, state laws, and university policies.

Stimuli. Figure 2 illustrates the experimental setup. A computer was used to control the stimulus generation, 
calibration, and delivery through custom Matlab programs and a 24-bit external USB sound card at a 44.1 kHz 
sampling rate (Creative Labs Inc., Milpitas, CA). Auditory stimulation was delivered via a GSI 61 audiometer and 
speaker (Grason-Stadler Inc., Eden Prairie, MN). The subjects were placed in a soundproof booth at a distance of 
1 meter away from the speaker. The most comfortable level was presented on an individual basis, ranging from 
65 to 75 dB SPL across subjects.

A tactile transducer (Tactaid Model VBW32, Audiological Engineering Corp., Somerville, MA) was used to 
deliver tactile stimulation. The tactile transducer was powered by an amplifier (Crown Audio, Elkhart, IN), and 
attached to the index fingertip of the non-dominant hand of the subject using electrical tape. The subjects rested 
their arms on a desk and were asked to place their hand palm-side up to keep the vibration intensity consistent. A 
250-Hz sinusoid was used to calibrate the tactile stimulation, with the maximum output of the tactile stimulator 
being adjusted to 2.5 volts, or a 0 dB reference. The most comfortable level of tactile stimulation ranged between 
−20 dB to −10 dB relative to the maximum output across the subjects.

IEEE sentences49 were used as the target stimuli while speech-spectrum-shaped noise was used as the masker. 
Due to the limited bandwidth of tactile sensation15, only the fundamental frequency of the IEEE sentences was 
extracted and delivered to the tactile transducer. The method of fundamental frequency extraction was described 
previously22, 50. To deliver ETS, the unprocessed IEEE sentences were presented to the cochlear implants while the 
fundamental frequency was delivered simultaneously to the tactile transducer.

Procedures. A one-down, one-up adaptive procedure was used to measure the speech reception threshold51. 
Speech reception threshold was defined as the signal-to-noise ratio at which the subject achieved 50% correct 
responses. Therefore, lower speech reception thresholds meant better performance.

Figure 2. The ETS experimental setup. A personal computer (PC) controls both electric and tactile stimulation. 
Electric stimulation is delivered to a cochlear implant (CI) through an audiometer and speaker. Tactile 
stimulation is delivered to the index finger through an amplifier and a tactile transducer.
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