Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains

Abstract

For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, [Formula: see text] and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring [Formula: see text] and the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance and management. Previous researchers have used chain size distributions to infer [Formula: see text], but estimation of the degree of individual-level variation in infectiousness (as quantified by the dispersion parameter, [Formula: see text]) has typically required contact tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how maximum likelihood estimation can be applied to chain size data to infer both [Formula: see text] and the dispersion parameter that characterizes heterogeneity. While the maximum likelihood value for [Formula: see text] is a simple function of the average chain size, the associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in [Formula: see text] is detectable. In addition, by allowing for superspreading events, inference of [Formula: see text] shifts the threshold above which a transmission chain should be considered anomalously large for a given value of [Formula: see text] (thus reducing the probability of false alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is likely to significantly bias results.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View