Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

“One-Pot” Aminolysis/Thiol–Maleimide End-Group Functionalization of RAFT Polymers: Identifying and Preventing Michael Addition Side Reactions

Abstract

We show that many of the nucleophiles (catalysts, reducing agents, amines, thiols) present during "one-pot" aminolysis/thiol-maleimide end-group functionalization of RAFT polymers can promote side reactions that substantially reduce polymer end-group functionalization efficiencies. The nucleophilic catalyst 1,8-diazabicyclo[5.4.0]undec-7-ene and the reducing agent tributylphosphine were shown to initiate anionic polymerization of N-methylmaleimide (NMM) in both polar and nonpolar solvents whereas hexylamine-initiated polymerization of NMM occurred only in high-polarity solvents. Furthermore, triethylamine-catalyzed Michael reactions of the representative thiol ethyl 2-mercaptopropionate (E2MP) and NMM in polar solvents resulted in anionic maleimide polymerization when [NMM]0 > [E2MP]0. Base-catalyzed enolate formation on the α-carbon of thiol-maleimide adducts was also shown as an alternative initiation pathway for maleimide polymerization in polar solvents. Ultimately, optimal "one-pot" reaction conditions were identified allowing for up to 99% maleimide end-group functionalization of dithiobenzoate-terminated poly(N,N-dimethylacrylamide). Much of the work described herein can also be used to ensure near-quantitative conversion of small molecule thiol-maleimide reactions while preventing previously unforeseen side reactions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View