Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Assessing the Bonding Properties of Individual Molecular Orbitals

Abstract

Molecular orbitals (MOs), while one of the most widely used representations of the electronic structure of a system, are often too complex to intuit properties. Aside from the simplest of cases, it is not necessarily possible to visually tell which orbitals are bonding or antibonding along particular directions, especially in cases of highly delocalized and nontrivial bonding like metal clusters or solids. We propose a method for easily assessing and comparing the relative bonding contributions of MOs, by calculating their response to stress (e.g., compression). We find that this approach accurately describes relative bonding or antibonding character in both the simplest cases and provides new insight in more complex cases. We test the approach on four systems: H2, Am2, benzene, and the Pt4 cluster. In exploring this methodology, a scheme became elucidated, for predicting changes in the ground electronic configuration upon compression, including changes in bonding order, angular momenta of occupied MOs, and trends in MO ordering. We note that the applications of this work go beyond simple molecules and could be straightforwardly extended to, for example, solids and their response to stress along the specific crystallographic plane. Additionally, predictions of structures and properties of chemical systems under stress could result from the emerging intuition about changes in the electronic structure.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View