Skip to main content
Download PDF
- Main
Pharmacological and toxicological activity of RSD921, a novel sodium channel blocker
Published Web Location
https://doi.org/10.1016/j.biopha.2018.06.157Abstract
Background
RSD921, the R,R enantiomer of the kappa (k) agonist PD117,302, lacks significant activity on opioid receptors.Methods
The pharmacological and toxicological actions were studied with reference to cardiovascular, cardiac, antiarrhythmic, toxic and local anaesthetic activity.Results
In rats, dogs and baboons, RSD921 dose-dependently reduced blood pressure and heart rate. In a manner consistent with sodium channel blockade it prolonged the PR and QRS intervals of the ECG. Furthermore, in rats and NHP, RSD921 increased the threshold currents for induction of extra-systoles and ventricular fibrillation (VFt), and prolonged effective refractory period (ERP). In rats, RSD921 was protective against arrhythmias induced by electrical stimulation and coronary artery occlusion. Application of RSD921 to voltage-clamped rat cardiac myocytes blocked sodium currents. RSD921 also blocked transient (ito) and sustained (IKsus) outward potassium currents, albeit with reduced potency relative to sodium current blockade. Sodium channel blockade due to RSD921 in myocytes and isolated hearts was enhanced under ischaemic conditions (low pH and high extracellular potassium concentration). When tested on the cardiac, neuronal and skeletal muscle forms of sodium channels expressed in Xenopus laevis oocytes, RSD921 produced equipotent tonic block of sodium currents, enhanced channel block at reduced pH (6.4) and marked use-dependent block of the cardiac isoform. RSD921 had limited but quantifiable effects in subacute toxicology studies in rats and dogs. Pharmacokinetic analyses were performed in baboons. Plasma concentrations producing cardiac actions in vivo after intravenous administration of RSD921 were similar to the concentrations effective in the in vitro assays utilized.Conclusions
RSD921 primarily blocks sodium currents, and possesses antiarrhythmic and local anaesthetic activity.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%