- Main
State-based network similarity visualization
Published Web Location
https://doi.org/10.1177/1473871619882019Abstract
We introduce an approach for the interactive visual analysis of weighted, dynamic networks. These networks arise in areas such as computational neuroscience, sociology, and biology. Network analysis remains challenging due to complex time-varying network behavior. For example, edges disappear/reappear, communities grow/vanish, or overall network topology changes. Our technique, TimeSum, detects the important topological changes in graph data to abstract the dynamic network and visualize one summary representation for each temporal phase, a state. We define a network state as a graph with similar topology over a specific time interval. To enable a holistic comparison of networks, we use a difference network to depict edge and community changes. We present case studies to demonstrate that our methods are effective and useful for extracting and exploring complex dynamic behavior of networks.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-