- Main
On the Detection of COVID‐Driven Changes in Atmospheric Carbon Dioxide
Published Web Location
https://doi.org/10.1029/2021gl095396Abstract
We assess the detectability of COVID-like emissions reductions in global atmospheric CO2 concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2 sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon-concentration feedbacks obscure the detectability of short-term emission reductions in atmospheric CO2. COVID-driven changes in the simulated, column-averaged dry air mole fractions of CO2 are eclipsed by large internal variability. Carbon-concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions-driven signal in the atmosphere carbon reservoir and further confound signal detection.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-