Skip to main content
eScholarship
Open Access Publications from the University of California

Products of the OH radical-initiated reactions of furan, 2- and 3-methylfuran, and 2,3- and 2,5-dimethylfuran in the presence of NO.

  • Author(s): Aschmann, Sara M
  • Nishino, Noriko
  • Arey, Janet
  • Atkinson, Roger
  • et al.

Published Web Location

https://doi.org/10.1021/jp410345k
Abstract

Products of the gas-phase reactions of OH radicals with furan, furan-d4, 2- and 3-methylfuran, and 2,3- and 2,5-dimethylfuran have been investigated in the presence of NO using direct air sampling atmospheric pressure ionization tandem mass spectrometry (API-MS and API-MS/MS), and gas chromatography with flame ionization and mass spectrometric detectors (GC-FID and GC-MS) to analyze samples collected onto annular denuders coated with XAD solid adsorbent and further coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for derivatization of carbonyl-containing compounds to their oximes. The products observed were unsaturated 1,4-dicarbonyls, unsaturated carbonyl-acids and/or hydroxy-furanones, and from 2,5-dimethylfuran, an unsaturated carbonyl-ester. Quantification of the unsaturated 1,4-dicarbonyls was carried out by GC-FID using 2,5-hexanedione as an internal standard, and the measured molar formation yields were: HC(O)CH═CHCHO (dominantly the E-isomer) from OH + furan, 75 ± 5%; CH3C(O)CH═CHCHO (dominantly the E-isomer) from OH + 2-methylfuran, 31 ± 5%; HC(O)C(CH3)═CHCHO (a E-/Z-mixture) from OH + 3-methylfuran, 38 ± 2%; and CH3C(O)C(CH3)═CHCHO from OH + 2,3-dimethylfuran, 8 ± 2%. In addition, a formation yield of 3-hexene-2,5-dione from OH + 2,5-dimethylfuran of 27% was obtained from a single experiment, in good agreement with a previous value of 24 ± 3% from GC-FID analyses of samples collected onto Tenax solid adsorbent without derivatization.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View