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Out-of-Order Parallel Discrete Event Simulation
for Transaction Level Models

Weiwei Chen, Member, IEEE, Xu Han, Che-Wei Chang, Guantao Liu, and Rainer Dömer, Member, IEEE

Abstract—The validation of system models at the transaction-
level typically relies on discrete event (DE) simulation. In
order to reduce simulation time, parallel discrete event simu-
lation (PDES) can be used by utilizing multiple cores available
on today’s host PCs. However, the total order of time imposed
by regular DE simulators becomes a bottleneck that severely
limits the benefits of parallel simulation. In this paper, we
present a new out-of-order (OoO) PDES technique for simu-
lating transaction-level models on multicore hosts. By localizing
the simulation time to individual threads and carefully handling
events at different times, a system model can be simulated follow-
ing a partial order of time without loss of accuracy. Subject to
advanced static analysis at compile time and table-based decisions
at run time, threads can be issued early, reducing the idle time
of available cores. Our proposed OoO PDES technique shows
high performance gains in simulation speed with only a small
increase in compile time. Using six embedded application exam-
ples, we also show the speed trade-off for multicore PDES based
on different multithreading libraries.

Index Terms—Parallel discrete event simulation (PDES),
system-level description languages (SLDLs), system-level design
and validation, transaction level modeling.

I. INTRODUCTION

THE increasing complexity of embedded systems poses
tremendous challenges for modeling, validation, and syn-

thesis at the electronic system level. Moving to higher abstrac-
tion levels, system-level description languages (SLDLs), such
as SystemC [1] and SpecC [2], allow designers to describe
hardware and software components together in the same
transaction-level model (TLM). To enable efficient design space
exploration, a TLM specifies the functionality of the intended
design using a hierarchy of connected modules with clean sepa-
ration of computation and communication. Notably, a TLM also
specifies any potential for parallelism and pipelining explicitly.

In this paper, we address the validation of TLMs which
requires accurate yet fast simulation. TLM simulation is based
on discrete event (DE) semantics. Within a single process,
multiple concurrent threads represent the parallelism in the
design model and are executed under the coordination of a
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DE-based scheduler. The scheduler issues threads following a
global notion of time and interprets the “zero-delay” seman-
tics of SLDLs by use of so-called delta-cycles which impose a
partial order on the events that happen at the same time [1].

The reference simulators for both SpecC and SystemC
SLDLs issue only a single thread at any time, thereby avoiding
the otherwise necessary complex synchronization of the con-
current threads. Here, however, the sequential scheduler is a
serious obstacle to simulation speed.

Due to the inexpensive availability of parallel processing
capabilities in today’s multicore hosts, recently parallel DE sim-
ulation (PDES) [3] has gained attention again. Using operating
system (OS) kernel threads with added synchronization, PDES
issues multiple threads concurrently and runs them on the avail-
able CPU cores in parallel. In turn, simulation speed increases
significantly.

In this paper, we describe an advanced PDES approach,
called out-of-order PDES (OoO PDES), which improves per-
formance even further. Without loss of accuracy, OoO PDES
relaxes the global in-order event and simulation time updates
in PDES so that more threads can run in parallel, resulting in
higher simulator speed.

Using advanced compile-time analysis of the threads
and their potential conflicts, the OoO PDES scheduler can at
run-time quickly decide whether or not it is safe to issue a
set of threads in parallel. Moreover, by using thread-local sim-
ulation times, the simulator can also run threads in parallel
which are at different simulation cycles, while ensuring fully
SLDL-compliant behavior without modification of the design
model.

A. Motivation

Both SystemC and SpecC SLDLs define DE-based execu-
tion semantics with zero-delay delta-cycles. Concurrent threads
implement the parallelism in the design model, communicate
via events and shared variables, and advance simulation time
by use of wait-for-time primitives. Parallel execution of these
threads is desirable to improve the simulation performance on
multicore hosts.

While the reference simulators issue only one thread at a
time, recent PDES approaches, such as [4] and [5], take advan-
tage of the fact that threads running at the same time and
delta-cycle can execute in parallel. However, this synchronous
PDES imposes a strict order on event delivery and time advance
which makes delta and time cycles absolute barriers for thread
scheduling. Specifically, when a thread finishes its execution
cycle, it has to wait until all other active threads complete
their execution cycle. Only then the simulator advances to the
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Fig. 1. High-level DVD player model with video and audio streams.

next delta or time cycle. Available CPU cores are idle until all
threads have reached the cycle barrier.

We note that synchronous PDES issues threads strictly in
order, with increasing time stamps after each cycle barrier. This
can severely limit the desired parallel execution.

As a motivating example, Fig. 1 shows a high-level model
of a DVD player which decodes a stream of H.264 video and
MP3 audio data using separate decoders. Since, video and audio
frames are data independent, the decoders run in parallel. Both
output the decoded frames according to their rate, 30 frames/s
for video (delay 33.3 ms) and 38.28 frames/s for audio (delay
26.12 ms).

Unfortunately, synchronous PDES cannot exploit the paral-
lelism in this example. Fig. 2(a) shows the thread scheduling
along the time line. Except for the first scheduling step, only
one thread can run at a time. Note that it is not data dependency
but the global timing that prevents parallel execution.

In this paper, we break the cycle barrier and let independent
threads run OoO and in parallel. By carefully analyzing poten-
tial data and event dependencies and coordinating local time
stamps for each thread, we fully maintain accuracy in simulation
semantics and time. Fig. 2(b) shows the OoO schedule for the
DVD player example. The MP3 and H.264 decoders simulate in
parallel on different cores and maintain their own time stamps.
As a result, we significantly reduce the simulator run time.

B. Related Work

PDES is a well-studied subject in [3], [6], and [7]. Two
major synchronization paradigms can be distinguished, namely
conservative and optimistic [3]. Conservative PDES typically
involves dependency analysis and ensures in-order execution
for dependent threads. In contrast, the optimistic paradigm
assumes that threads are safe to execute and rolls back when
this proves incorrect. Often, the temporal barriers in the model
prevent effective parallelism in conservative PDES, while roll-
backs in optimistic PDES are expensive in implementation and
execution.

The proposed OoO PDES is conservative and can be seen as
an improvement over synchronous PDES on symmetric mul-
tiprocessing (SMP) architectures with global simulation time
and delta-cycle notion, such as [4], [5], and [8]. An extended
SystemC simulator described in [4] and [8] schedules multiple
OS kernel threads in PDES fashion on multicore processors.
The SpecC-based approach described in [5] is very similar.
However, it features a detailed synchronization protection mech-
anism which automatically instruments any user-defined and

Fig. 2. Scheduling of the high-level DVD player model. (a) Synchronous
PDES schedule. (b) OoO PDES schedule.

hierarchical channels. As such, the latter approach does not need
to work around the cooperative SystemC execution semantics
of the former approaches, neither does it require a specially
prepared channel library.

Distributed parallel simulation, such as [6] and [9], is a natu-
ral extension of PDES. Distributed simulation breaks the design
model into modules on geographically distributed hosts and
then runs the simulation in parallel. However, model partition-
ing is difficult and network speed becomes a bottleneck due to
frequently needed communication.

Related work on improving simulator speed in the broader
sense can be categorized into software modeling and special-
ized hardware approaches. Software techniques include the
general idea of TLM [10], which speeds up simulation by
higher abstraction of communication, and source-level [11] or
host-compiled simulation [12] which abstract the computation
from the target platform. Generally, these approaches trade-
off simulation speed against a loss in accuracy, for example,
approximate timing due to estimated or back-annotated values.

Temporal decoupling proposed by SystemC TLM [13] also
trades-off timing accuracy against simulation speed. Simulation
time is incremented separately in different threads to mini-
mize synchronization, but accuracy is reduced. In contrast, OoO
PDES also localizes simulation time to different threads, but
fully maintains accurate timing.

Specialized hardware approaches include the use of field-
programmable gate array (FPGA) and graphics processing
unit (GPU) platforms. For example, [14] emulates SystemC
code on FPGA boards and [15] proposes a SystemC mul-
tithreading model for GPU-based simulation. Reference [16]
presents a methodology to parallelize SystemC simulation
across multicore CPUs and GPUs. For such approaches, model
partitioning is difficult on the heterogeneous simulator units.

Other simulation techniques change the simulation infrastruc-
ture to allow multiple simulators to run in parallel and synchro-
nize as needed. For example, the Wisconsin wind tunnel [17]
uses a conservative time bucket synchronization scheme to syn-
chronize simulators at a predefined interval. This technique
significantly speedup the simulation at the cost of timing accu-
racy. Another example [18] introduces a simulation backplane
to handle the synchronization between wrapped simulators and
analyzes the system to optimize the period of synchronization
message transfers. It sacrifices the timing accuracy for inter-
rupt services for speed benefits of parallel simulation without
causing any harm on the functional correctness of the design.
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In contrast to the approaches above, the proposed OoO
PDES does not sacrifice any accuracy in the simulation, nei-
ther does it require any special setup or hardware, nor any
changes to the design model. In comparison to [19]–[21], this
paper extends the dependency analysis at compile- and run-
time. We add a detailed description of the conflict analysis
for variables at different scopes and OoO hazards due to the
localized timing (Section III-B). We also integrate a novel
prediction technique (Section V) and a hybrid multithread-
ing library (Section VI), which further improve the simulator
speed. We show this with added experimental results for a new
H.264 video encoder model and two highly parallel graphics
applications (Section VII).

II. OOO PARALLEL SIMULATION

In contrast to synchronous PDES, which imposes a total
order on event processing and time advances, we now propose
OoO PDES where timing is only partially ordered. We localize
the global simulation time for each thread and allow threads
without potential data or event conflicts to run ahead of time,
maximizing multicore utilization.

A. Notations

To formally describe the OoO PDES scheduling algorithm,
we introduce the following notations.

1) We define simulation time as tuple (t, δ) where t = time,
δ = delta-cycle. We order time stamps as follows.

a) Equal: (t1, δ1) = (t2, δ2), iff t1 = t2, δ1 = δ2.
b) Before: (t1, δ1) < (t2, δ2), iff t1 < t2, or t1 = t2,

δ1 < δ2.
c) After: (t1, δ1) > (t2, δ2), iff t1 > t2, or t1 = t2,

δ1 > δ2.
2) Each thread th has its own time (tth, δth).
3) Since events can be notified multiple times and at differ-

ent simulation times, we note an event e notified at (t, δ)
as tuple (ide, te, δe) and define: EVENTS= ∪EVENTSt,δ
where EVENTSt,δ = {(ide, te, δe) | te = t, δe = δ)}.

4) For DE-based simulation, typically several sets of queued
threads are defined, such as QUEUES = {READY, RUN,
WAIT, WAITFOR}. These sets exist at all times and
threads move from one to the other during simulation,
as shown in Fig. 3(a). For OoO PDES, we define multi-
ple sets with different time stamps, which we dynamically
create and delete as needed, as illustrated in Fig. 3(b).

Specifically, we define the following.
a) QUEUES = {READY, RUN, WAIT, WAITFOR,

JOINING, COMPLETE}.
b) READY = ∪READYt,δ , READYt,δ = {th | th is

ready to run at (t, δ)}.
c) RUN = ∪RUNt,δ , RUNt,δ = {th | th is running at

(t, δ)}.
d) WAIT = ∪WAITt,δ , WAITt,δ = {th | th is waiting

since (t, δ) for events (ide, te, δe), where (te, δe) ≥
(t, δ)}.

e) WAITFOR = ∪WAITFORt,δ , WAITFORt,δ =
{th | th is waiting for simulation time advance to
(t, 0)} Note that δ is always 0 for the WAITFORt,δ
queues.

Fig. 3. States and transitions of simulation threads (simplified). (a) Static
states in synchronous PDES. (b) Dynamic states in OoO PDES.

f) JOINING = ∪JOININGt,δ , JOININGt,δ = {th | th
created child threads at (t, δ) and waits for them to
complete}.

g) COMPLETE = ∪COMPLETEt,δ , COMPLETEt,δ =
{th | th completed its execution at (t, δ)}.

Note that for efficiency our implementation orders
these sets by increasing time stamps.

5) Initial state at the beginning of simulation.
a) t = 0, δ = 0.
b) RUN = RUN0,0 = {throot}.
c) READY = READY0,0 = WAIT = WAIT0,0 =

WAITFOR = WAITFOR0,0 = COMPLETE =
COMPLETE0,0 = JOINING = JOINING0,0 = ∅.

6) Simulation invariants.
Let THREADS be the set of all existing threads. Then,
at any time, the following conditions hold.

a) THREADS = READY ∪ RUN ∪ WAIT ∪
WAITFOR ∪ JOINING ∪ COMPLETE.

b) ∀ A, B ∈ QUEUES, A, B �= ∅: A �= B ⇔ A∩B = ∅.
At any time, each thread belongs to exactly one set, and

this set determines its state. Coordinated by the scheduler,
threads change state by transitioning between the sets, as
follows.

1) READYt,δ → RUNt,δ: The thread becomes runable
(is issued).

2) RUNt,δ → WAITt,δ: The thread calls wait for an event.
3) RUNt,δ → WAITFORt′,0, where t < t′ = t + delay: The

thread calls waitfortime(delay).
4) RUNt,δ → JOININGt,δ: The thread creates its child

threads and waits for them to complete.
5) RUNt,δ → COMPLETEt,δ: The thread finishes the work

and completes.
6) WAITt,δ → READYt′,δ′ , where (t, δ) < (t′, δ′): The

event that the thread is waiting for is notified; the thread
becomes ready to run at (t′, δ′).

7) JOININGt,δ → READYt′,δ′ , where (t, δ) ≤ (t′, δ′): Child
threads completed and their parent becomes ready to run
again.

8) WAITFORt,δ → READYt,δ , where δ = 0: Simulation
time advances to (t, 0), making one or more threads ready
to run.

The thread and event sets evolve during simulation as illus-
trated in Fig. 3(b). Whenever the sets READYt,δ and RUNt,δ are
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Algorithm 1 OoO PDES Algorithm
1: /* trigger events */
2: for all th ∈ WAIT do
3: if ∃ event (ide, te, δe), th awaits e, and (te, δe) ≥ (tth, δth) then
4: move th from WAITtth,δth to READYte,δe+1
5: tth = te; δth = δe + 1
6: end if
7: end for
8: /* update simulation subsets */
9: for all READYt,δ and RUNt,δ do

10: if READYt,δ = ∅ and RUNt,δ = ∅ and WAITFORt,δ = ∅ then
11: delete READYt,δ , RUNt,δ , WAITFORt,δ , EVENTSt,δ
12: merge WAITt,δ into WAITnext(t,δ); delete WAITt,δ
13: end if
14: end for
15: /* issue qualified threads (delta cycle) */
16: for all th ∈ READY do
17: if RUN.size < numCPUs and HasNoConflicts(th) then
18: issue th
19: end if
20: end for
21: /* handle wait-for-time threads */
22: for all th ∈ WAITFOR do
23: move th from WAITFORtth,δth to READYtth,0
24: end for
25: /* issue qualified threads (time advance cycle) */
26: for all th ∈ READY do
27: if RUN.size < numCPUs and HasNoConflicts(th) then
28: issue th
29: end if
30: end for
31: /* if the scheduler hits this case, we have a deadlock */
32: if RUN = ∅ then
33: report deadlock and exit
34: end if

empty and there are no WAIT or WAITFOR queues with ear-
lier timestamps, the scheduler deletes READYt,δ and RUNt,δ , as
well as any expired events with the same timestamp EVENTSt,δ
(lines 8–14 in Algorithm 1).

B. OoO PDES Scheduling Algorithm

Algorithm 1 defines the scheduling algorithm of our OoO
PDES. At each scheduling step, the scheduler first evalu-
ates notified events and wakes up corresponding threads in
WAIT. If a thread becomes ready to run, its local time
advances to (te, δe + 1) where (te, δe) is the timestamp of
the notified event (line 5 in Algorithm 1). After event han-
dling, the scheduler cleans up any empty queues and expired
events and issues qualified threads for the next delta-cycle
(line 18). Next, any threads in WAITFOR are moved to
the READY queue corresponding to their wait time and
issued for execution if qualified (line 28). Finally, if no
threads can run (RUN = ∅), the simulator reports a deadlock
and quits.1

Note that our scheduling is aggressive. The scheduler issues
threads for execution as long as idle CPU cores and threads
without conflicts (HasNoConflicts(th)) are available.

Note also that we can easily turn on/off the parallel OoO
execution at any time by setting the numCPUs variable. For
example, when in-order execution is needed during debugging,
we set numCPUs = 1 and the algorithm will behave the same
as the traditional DE simulator where only one thread is running
at all times.

1The condition for a deadlock is the same as for a regular DE simulator.

III. OOO CONFLICT ANALYSIS

The OoO scheduler depends on conservative analysis of
potential conflicts among the active threads. We now describe
the threads and their position in their execution, and then present
the conflict analysis which we separate into static compile-time
and dynamic run-time checking.

A. Thread Segments and Segment Graph (SG)

At run time, threads switch back and forth between the
states of RUNNING and WAITING. When RUNNING, they exe-
cute specific segments of their code. To formally describe
our OoO PDES conflict analysis, we introduce the following
definitions.

1) Segment segi: Source code statements executed by a
thread between two scheduling steps.

2) Segment Boundary vi: SLDL statements which call the
scheduler, i.e., wait, waitfor, par, etc.

Note that segments segi and segment boundaries vi form a
directed graph where segi is the segment following the boundary
vi. Every node vi starts its segment segi and is followed by other
nodes starting their corresponding segments. We formally define
the following.

1) SG: SG = (V, E), where V = {v | v is a segment bound-
ary}, E = {eij | eij is the set of statements between vi and
vj, where vj could be reached from vi, and segi = ∪eij}.

Fig. 4(a) shows a simple example written in SpecC SLDL.
The design contains two parallel instances, b1 of type
B1 and b2 of type B2. Both b1 and b2 contain loops with
computation, synchronization, and simulation time advances.
Finally, the Main behavior prints the value of a variable to the
screen.

From the corresponding CFG in Fig. 4(b), we derive the SG
in Fig. 4(c). The graph shows nine segment nodes connected
by edges indicating the possible flow between the nodes. From
the starting node v0, the control flow reaches the par statement
(line 19) where the scheduler is called to create two threads for
b1 and b2. Two new segments, represented by the nodes v1
and v5, are created for b1 and b2. Instance b1 first reaches
waitfor 1 (line 8) via v1→v2, or skips the while loop
(line 7) to reach waitfor 3 (line 12) via v1→v4. While in
the loop (line 7), the execution reaches wait e (line 9) via
v2→v3 after waitfor 1 (line 8), and then waitfor 3 (line
12) via v3→v4 when it exits the loop.

Similarly, instance b2 reaches waitfor 2 (line 8) via
v5→v6 and waitfor 4 (line 12) via v6→v7 after the loop.
Its execution completes at the end of the par statement via
v7→v8. Finally, after v8 the execution terminates. Note that a
code statement can be part of multiple segments. For example,
line 7 for B1 belongs to both seg1 and seg3. Note also that
threads execute one segment in each scheduling step.

B. Static Conflict Analysis

To comply with SLDL execution semantics, threads must not
execute in parallel or OoO if their segments pose any hazard
toward validity of data, event delivery, or timing.

1) Data Hazards: Data hazards are caused by parallel or
OoO accesses to shared variables. Three cases exist, namely
read-after-write (RAW), write-after-read (WAR), and write-
after-write (WAW).
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Fig. 4. Simple design example with corresponding control flow graph (CFG),
SG, conflict tables (CTs), and time advance tables. (a) Example source code
in SpecC. (b) CFG. (c) SG. (d) Data CT. (e) Event notification table (NT).
Time advance table for the (f) current segment (CTime) and (g) next segment
(NTime). (h) Segment variable access lists.

Fig. 5 shows a simple example of a WAW conflict where
two parallel threads th1 and th2 start at the same time but write
to the same variable i at different times. Simulation semantics
require that th1 executes first and sets i to 0 at time (5, 0),
followed by th2 setting i to its final value 1 at time (10, 0). If
the simulator would issue the threads th1 and th2 in parallel,
this would create a race condition, making the final value of i

Fig. 5. WAW conflict between two parallel threads.

nondeterministic. Thus, we must not schedule th1 and th2 OoO.
Note, however, that th1 and th2 can run in parallel after their
second wait-for-time statement if the functions f () and g() are
independent.

Since, data hazards stem from the code in specific segments,
we analyze data conflicts statically at compile-time and create
a table where the scheduler can then at run-time quickly lookup
any potential conflicts between active segments.

We define a data CT CT[N, N] where N is the total number
of segments in the application code: CT[i, j] = true, iff there
is a potential data conflict between the segments segi and segj;
otherwise, CT[i, j] = false.

To build the CT, we compile for each segment a variable
access list which contains all variables accessed in the segment.
Each entry is a tuple (Symbol, AccessType) where Symbol is
the variable and AccessType specifies read-only (R), write-only
(W), read-write (RW), or pointer access (Ptr).

Finally, we create the CT CT[N, N] by comparing the access
lists for each segment pair. If two segments segi and segj share
any variable with access type (W) or (RW), or there is any Ptr
by segi or segj, then we mark this as a potential conflict.

Fig. 4(d) shows the data CT for the example in Fig. 4(a).
Here, for instance, seg3 has a data conflict (WAW) with seg7,
since, seg3 writes x (line 10) and seg7 writes x (line 13, port p
is mapped to x).

Not all variables are straightforward to analyze, however. The
SLDL actually supports variables at different scopes as well as
ports which are connected by port maps.

We distinguish and handle the following cases.
1) Global Variables, e.g., x, y in Line 2: This case is

discussed above and can be handled directly as tuple
(Symbol, AccessType).

2) Local Variables, e.g., tmp in Line 6 for Behavior B1:
Local variables are stored on the stack and cannot be
shared between different threads. Thus, they can be
ignored in the access lists.

3) Instance Member Variables, e.g., i in Line 5 for Behavior
B2: Since, classes can be instantiated multiple times and
then their variables are different, we need to distinguish
them by their complete instance path prepended to the
variable name. For example, the actual Symbol used for
instance of B2’s variable i is Main.b2.i.2

4) Port Variables, e.g., p in Line 3: For ports, we need
to find the actual variable mapped to the port and use
that as Symbol together with its actual instance path.
For example, x is the actual variable mapped to port
Main.b2.p. Note that tracing ports to their connected
variables requires the compiler to follow port mappings
through the structural hierarchy of the design model

2In SpecC, there is always only one instance of the Main behavior. Thus,
we can omit Main from the instance path.
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TABLE I
TIME ADVANCES AT SEGMENT BOUNDARIES

TABLE II
EXAMPLES FOR DIRECT AND INDIRECT TIMING HAZARDS

which is possible when all used components are part of
the current translation unit.

5) Pointers: We currently do not perform pointer analy-
sis (future work). For now, we conservatively mark all
segments with Ptrs as potential conflicts.

2) Event Hazards: Thread synchronization through event
notification also poses hazards to OoO execution. Specifically,
thread segments are dependent when one is waiting for an event
notified by another.

We define an event NT NT[N, N] where N is the total number
of segments: NT[i, j] = true, iff segment segi notifies an event
that segj is waiting for; otherwise, NT[i, j] = false. Note that in
contrast to the data CT, the event NT is not symmetric.

Fig. 4(e) shows the event NT for the simple example. For
instance, NT[6, 3] = true since seg6 notifies the event e (line 10)
which seg3 waits for (line 9).

Note that, in order to identify event instances, we use the
same scope and port map handling for events as described above
for data variables.

3) Timing Hazards: The local time for an individual thread
in OoO PDES can pose a timing hazard when the thread runs
too far ahead of others. To prevent this, we analyze the time
advances of threads at segment boundaries. There are three
cases with different increments, as listed in Table I.

We define two time advance tables, one for the segment a
thread is currently in, and one for the next segment(s) that a
thread can reach in the following scheduling step.

The current time advance table CTime[N] lists the time incre-
ment that a thread will experience when it enters the given
segment. For the example in Fig. 4(f) for instance, the waitfor
2 (line 8) at the beginning of seg6 sets CTime[6] = (2:0).

The next time advance table NTime[N] lists the time incre-
ment that a thread will incur when it leaves the given and enters
the next segment. Since, there may be more than one next seg-
ment, we list in the table the minimum of the time advances
which is the earliest time the thread can become active again.
Formally

NTime[i] = min{CTime[ j], ∀segj which follow segi}.
For example, Fig. 4(g) lists NTime[1] = (1:0), since, seg1 is

followed by seg2 [increment (1:0)] and seg4 [increment (3:0)].
There is two types of timing hazards, namely direct and indi-

rect ones. For a candidate thread th1 to be issued, a direct
timing hazard exists when another thread th2, that is safe to
run, resumes its execution at a time earlier than the local time

Algorithm 2 Conflict Detection in Scheduler
1: bool NoConflicts(Thread th)
2: {
3: for all th2 ∈ RUN ∪ READY,
4: where (th2.t, th2.δ) < (th.t, th.δ) do
5: if (Conflict(th, th2))
6: then return false end if
7: end for
8: return true
9: }

10:
11: bool Conflict(Thread th, Thread th2)
12: {
13: if (th has data conflicts with th2) then
14: return true end if /*check data hazards*/
15: if (th2 may enter another segment before th) then
16: return true end if /*check time hazards*/
17: if (th2 may wake up another thread to run before th) then
18: return true end if /*check event hazards*/
19: return false
20: }

of th1. In this case, the future of th2 is unknown3 and could
potentially affect th1. Thus, it is not safe to issue th1.

Table II shows an example where th1 is considered for exe-
cution at time (10:2). If there is a thread th2 with local time
(10:0) whose next segment runs at time (10:1), i.e., before th1,
then the execution of th1 is not safe. However, if we know from
the time advance tables that th2 will resume its execution later
at (12:0), no timing hazard exists with respect to th2.

An indirect timing hazard exists, if a third thread th3 can
wake up earlier than th1 due to an event notified by th2. Again,
Table II shows an example. If th2 at time (10:0) potentially
wakes a thread th3 so that th3 runs in the next delta cycle (10:1),
i.e., earlier than th1, then it is not safe to issue th1.

C. Dynamic Conflict Detection

With the above analysis performed at compile time, the gen-
erated tables are passed to the simulator so that it can make
quick and safe scheduling decisions at run time by using table
lookups. Our compiler also instruments the design model such
that the current segment ID is passed to the scheduler as an
additional argument whenever a thread executes scheduling
statements, such as wait and wait-for-time.

At run-time, the scheduler calls a function HasNoConflicts(th)

to determine whether or not it can issue a thread th early. As
shown in Algorithm 2, HasNoConflicts(th) checks for potential
conflicts with all concurrent threads in the RUN and READY
queues with an earlier time than th. For each concurrent thread,
function Conflict(th, th2) checks for any data, timing, and event
hazards. Note that these checks can be performed in constant
time [O(1)] due to the table lookups.

IV. STATIC CONFLICT ANALYSIS IN THE COMPILER

At compile time, we use static analysis of the application
source code to determine whether or not any conflicts exist
between the segments. Overall, the compiler traverses the appli-
cation’s CFG following all branches, function calls, and thread
creation points, and recursively builds the corresponding SG.
The SG is then used to build the access lists and desired CTs.

3We predict the future of such threads in Section V.
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Algorithm 3 Build the SG
1: newSegList = BuildSegmentGraph(currSegList, stmnt)
2: {
3: switch (stmnt.type) do
4: case STMNT_COMPOUND:
5: newL = currSegList
6: for all subStmnt ∈ Stmnt do
7: newL = BuildSegmentGraph(newL, subStmnt)
8: end for
9: case STMNT_IF_ELSE:

10: ExtendAccess(stmnt.conditionVar, currSegList)
11: tmp1 = BuildSegmentGraph(currSegList, subIfStmnt)
12: tmp2 = BuildSegmentGraph(currSegList, subElseStmnt)
13: newL = tmp1

⋃
tmp2

14: case STMNT_WHILE:
15: ExtendAccess(stmnt.conditionVar, currSegList)
16: helperSeg = new Segment
17: tmpL = new SegmentList; tmpL.add(helperSeg)
18: tmp1 = BuildSegmentGraph(tmpL, subWhileStmnt)
19: if helperSeg ∈ tmp1
20: then remove helperSeg from tmp1 end if
21: for all Segment s ∈ tmp1

⋃
currSegList do

22: s.nextSegments
⋃

= helperSeg.nextSegments
23: end for
24: newL = currSegList

⋃
tmp1; delete helperSeg

25: case STMNT_PAR:
26: newSeg = new Segment; totalSegments ++
27: newEndSeg = new Segment; totalSegments ++
28: for all Segment s ∈ currSegList do
29: s.nextSegments.add(newSeg) end for
30: tmpL = new SegmentList; tmpL.add(newSeg)
31: for all subStmnt ∈ stmnt do
32: BuildSegmentGraph(tmpL, subStmnt)
33: for all Segment s ∈ tmpL do
34: s.nextSegments.add(newEndSeg) end for
35: end for
36: newL= new SegmentList; newL.add(newEndSeg)
37: case STMNT_WAIT:
38: case STMNT_WAITFOR:
39: newSeg = new Segment; totalSegments++
40: for all Segment s ∈ currSegList do
41: s.nextSegments.add(newSeg); end for
42: newL = new SegmentList; newL.add(newSeg)
43: case STMNT_EXPRESSION:
44: if stmnt is a function call f() then
45: newL = BuildFunctionSegmentGraph(currSegList, fct)
46: else
47: ExtendAccess(stmnt.expression, currSegList)
48: newL = currSegList
49: end if
50: case ...: /* other statements omitted for brevity */
51: end switch
52: return newL;
53: }

Note that a behavior can be instantiated multiple times.
Instance isolation is needed so as to create different segments
starting from the the same segment boundary for these instances
separately.4

To present the algorithm for building a SG in detail, we need
to introduce a few definitions.

1) cacheMultiInfo: A Boolean flag at each function show-
ing the need to cache information for different instances;
true if new segments are created or interface methods are
called in this function; false otherwise.
Note that, if cacheMultiInfo is false, the cached informa-
tion is the same for all instances that call the function.

2) cachedInfo: Cached information, as follows.

4The effect of instance isolation is discussed in detail in [21].

Algorithm 4 Code Analysis for OoO PDES, Phase 1:
BuildFunctionSegmentGraph(currSegList, fct)

1: if fct is first called then
2: BuildSegmentGraph(currSegList, fct.topstmnt);
3: if new segment nodes are created in fct then
4: set fct.cacheMultiInfo = true;
5: cache function information with current instID;
6: else
7: cache function information without instID; endif
8: else /*fct has already been analyzed*/
9: if fct.cacheMultiInfo = false then

10: /*no segments are created by calling this function*/
11: use the cached information of fct;
12: else /*new segments are created by calling this function*/
13: if current instID is cached then
14: use the cached information of fct.cacheinfo[instID];
15: else
16: BuildSegmentGraph(currSegList, fct.topstmnt);
17: cache function information with current instID; endif
18: endif
19: endif

a) instID: Instance identifier, e.g., Main.b1.
b) dummyInSeg: A dummy segment as the initial seg-

ment of this cached information.
c) carryThrough: A Boolean flag; true when the input

segment carries through the function and is part of
the output segments; false otherwise. For Main.b1,
B1.main.carrythrough = false since seg1 is
connected to both seg2 and seg4, and therefore will
not carry through B1.main.

d) outputSegments: Segments (without the input seg-
ment) that will be the output after analyz-
ing this function. For example for Main.b1,
B1.main.outputSegments = {seg4}.

e) segAccessLists: List of segment access lists. The
segments here are a subset of the global segments
in the design. This list only contains the segments
that are accessed by instID.fct.

During the analysis, when a statement is processed, there
is always an input segment list and an output segment list. For
example, for the B1 while loop [Fig. 4(a), line 7–11], the input
segment list is {seg1} and the output segment list is {seg3}. To
start, we create an initial segment (i.e., seg0) for the design as
the input segment of the first statement in the program, i.e.,
Main.main().

A. Algorithm for Static Conflict Analysis

The static code analysis algorithm consists of four phases.
1) Input: Design model (e.g., from file design.sc).
2) Output: SG and segment CTs.
3) Phase 1: Use Algorithm 3 to create the global

SG, where Algorithm 4 lists the details of function
BuildFunctionSegmentGraph() at line 45.
If no function needs to be cached for multiple instances,
the complexity of this phase is O(n) where n is the
number of statements in the design.

4) Phase 2: Use Algorithm 5 to build a local SG with seg-
ment access lists for each function. Here, we only add
variables accessed in this function to the segment access
lists. We do not follow function calls in this phase.
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Algorithm 5 Code Analysis for OoO PDES, Phase 2
1: for all functions fct do
2: Traverse the control flow of fct.
3: Create and maintain a local segment list localSegments.
4: Use fct.dummyInSeg as the initial input segment.
5: For each statement, add variables with their access type into

proper segments.
6: for all function calls inst.fct or fct do
7: Do not follow the function calls. Just register

inst.fct.dummyInSeg or fct.dummyInSeg as the input
segments of the current statement and indicate that inst.fct
or fct is called in the input segments.

8: Add the output segments of the function call to localSeg-
ments and use the output segments as the input of the next
statement in the current function.

9: end for
10: end for

Fig. 6. Function-local SGs and variable access lists for the example in Fig. 4.
(a) Main.main. (b) B.main (Main.b1). (c) B.main (Main.b2).

The complexity of this phase is O(ns) where ns is the
number of statements in the function definition.
Fig. 6(a) illustrates this for the example in Fig. 4. We do
not follow function calls to B1.main from Main.main
but connect a dummyInSeg node instead. We then create
two sets of main function cached information for the
instances of B1 and B2, respectively, shown in Fig. 6(b)
and (c), since segment boundary nodes are created when
calling B1.main and B2.main.
Note that we do not know yet the instance path of the
member variables in this phase. Therefore, we use port
variable p instead of its real mapping x here.

5) Phase 3: Build the complete segment access lists for
each function. Here, we propagate function calls and add
all accessed variables to the cached segment access lists
cascaded with proper instance paths.
For our example, b1 is cascaded to the instance
paths of the member variables accessed in segment
B1.main.dummyInSeg for instance b1 when analyz-
ing Main.main (if necessary).5 We also use the function
caching technique here to reduce the complexity of the
analysis. The complexity of this phase is O(ng) where ng
is the size of the SG for each function.

6) Phase 4: Collect the access lists for each segment in
Main.main and add them to the global segment access

5Regular member variables accessed in different instances will not cause
data hazards. Only port variables and interface member variables need the
instance path for tracing the real mapping later.

Fig. 7. OoO PDES scheduling. (a) Original scheduling. (b) Optimized
scheduling.

lists. Since, Main.main is the program entry (or root
function), all the segments are in its local segments and
the member variables have complete cascaded instance
paths in the segment access lists. The actual mapping
of port variables can now be found according to their
instance path, i.e., (x is the mapping of port p).
The complexity of this phase is O(nl) where nl is the size
of the local segment access list of Main.main.

In summary, the algorithm generates precise segment conflict
information. The overall complexity is, for practical purposes,
linear to the size of the analyzed design. As a limitation, we
currently do not support the analysis of recursive function calls
(future work).

V. OPTIMIZED OOO PDES WITH PREDICTIONS

To be safe and compliant with SLDL semantics, our OoO
scheduling is conservative in conflict checking. So far, we have
only considered potential conflicts among the current thread
segments, as well as one step ahead. This can disqualify some
threads from being issued out of the order that do not pose any
real hazards in the future.

A. State Prediction to Avoid False Conflicts

OoO scheduling is often prevented because of the unknown
future behavior of the threads. Fig. 7(a) shows the schedul-
ing of thread execution for the example in Fig. 4. The
threads th1 and th2 are running in different segments with their
own time. When one thread finishes its segment, shown as bold
black bars as scheduling point, the scheduler is called for thread
synchronization and issuing.

An example of a false conflict detected at run time is shown
in Fig. 7(a), when th2 finishes its execution in seg5 and hits the
scheduling point th2. 1 At that time, th1 is running in seg2.
The current time is (1:0) for th1 and (0:0) for th2. As shown
in Fig. 4(g), the next time advance is (0:1) for seg2 and (2:0)
for seg5. Therefore, the earliest time for th1 to enter the next
segment, i.e., seg3, is (1:1), and for th2 is (2:0). Since, th1 may
run into its next segment (seg3) with an earlier timestamp (1:1)
than th2 (2:0), the Conflict() in Algorithm 2 will return true
at line 16. The scheduler therefore cannot issue th2 OoO at
scheduling point th2. 1 .

However, this is a false conflict for OoO thread issuing.
Although, th1 may run into its next segment (seg3) earlier than th2,
there are no data conflicts between th1’s next segment seg3 and
th2’s current segment seg6. Moreover, the next time advance of
seg3 is (1:0). So, th1 will start a new segment no earlier than (2:0)
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Fig. 8. Partial SG with adjacency matrix and CT. (a) SG. (b) Segment adja-
cency matrix. (c) Data CT.

after finishing seg3. Thus, it is actually safe to issue th2 OoO at
scheduling point th2. 1 since th2’s time is not after (2:0).

We observe that, if the scheduler knows what will happen
with th1 in more than one scheduling step ahead of scheduling
point th2. 1 , it can issue th2 in parallel with th1 instead of
holding it back for the next scheduling step.

This observation motivates the idea of optimizing OoO PDES
by looking ahead of the current simulation state. With prediction
information, as shown in Fig. 7(b), th2 can be issued at both
scheduling points th2. 1 and th2. 2 . The simulator run time
can thus be shortened by prediction.

B. Static Prediction Analysis

To provide the OoO scheduler with prediction information,
we need the knowledge of future thread status. The OoO PDES
scheduler can check the future status of threads if we provide
future segment information. Consequently, we extend the data
structures defined in Section III-B.

1) Data Hazards Prediction:

a) Segment Adjacency Matrix (A[N,N]):

A[i, j] =
{

1 if segi is followed by segj
0 otherwise.

b) Predictive Data CT (CTn[N,N]):

CTn[i, j] =
⎧
⎨

⎩

true if segi has a potential data conflict
with segj within n scheduling steps

false otherwise.

Here, CT0[N,N] is the same as data CT CT[N,N].
However, CTn is asymmetric for n > 0.

Fig. 8(a) and (b) shows a partial SG and its adjacency matrix.
The Data CT is shown in Fig. 8(c) where a data conflict exist
between seg3 and seg4.

The Data CTs with 0, 1, and 2 prediction steps are shown in
Fig. 9(a)–(c), respectively. Since seg2 is followed by seg3 and
seg3 has a conflict with seg4, a thread in seg2 has a conflict
with a thread who is in seg4 after one scheduling step. Thus,
CT1[2, 4] is true in Fig. 9(b). Similarly, seg1 is followed by seg2
and seg2 is followed by seg3, so CT2[1, 4] is true in Fig. 9(c).

As shown in [20], the Data CT with n prediction steps can
be built recursively by using Boolean matrix multiplication.
Basically, if segi is followed by segj, and segj has a data con-
flict with segk within the next n − 1 prediction steps, then segi
has a data conflict with segk within the next n prediction steps.
Formally

CT0[N, N] = CT[N, N] (1)

CTn[N, N] = A′[N, N] ∗ CTn−1[N, N], where n>0. (2)

Fig. 9. Data structures for optimized OoO PDES scheduling. (a) Data CT w
0 prediction step (CT0). (b) Data CT w 1 prediction step (CT1). (c) Data CT
w 2 prediction steps (CT2). (d) Modified segment adjacency matrix. (e) Time
advance table w 0, 1, 2 prediction steps. (f) Combined Data CT.

Here, A’[N,N] is the modified adjacency matrix
[see Fig. 9(d)] with 1 s on the diagonal so as to pre-
serve the conflicts from the previous data conflict prediction
tables. Note that more conflicts are added to the CTs as the
number of prediction steps increases, up to a maximum limit.
As shown in [20], the number of prediction CTs for each
design is limited. The maximum number of predictions is at
most the length of the longest path in the SG.

We observe that CTm contains all the conflicts from CT0 to
CTm−1 (m>0). Thus, we propose the following.

a) Predictive Combined CT (CCT[N,N]):

CCT[i, j] =
{

k + 1 min {k|CTk[i, j] = true}
0 otherwise.

As shown in Fig. 9(f), the number of prediction steps is
stored in CCT (instead of Boolean values).

2) Time Hazards Prediction:

a) Predictive Time Advance Table (NTimen[N]):
NTimen[i] = min{thread time advance after n+1 schedul-
ing steps from segi}. Here, NTime0 = NTime.

Fig. 9(e) shows the time advance table with predictions
NTimen for the example in Fig. 8. If a thread is now running
in seg1, it will advance by at least (3:0) after two scheduling
steps. Therefore, NTime1[1] = (3:0).

3) Event Hazards Prediction: We need also prediction infor-
mation for event notifications to prevent event hazards.

a) Predictive Event NT (NTP[N, N]):

NTP[i, j] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(t�, δ�) if a thread in segi may wake up
a thread in segj with least
time advance of (t�, δ�)

(∞, 0) if a thread in segi will never
wake up another thread in segj.

Here, we have table entries of time advances. Note that a
thread can wake up another thread directly or indirectly via
other threads. For instance, th1 wakes up th2, and th2 then
wakes up th3 through event delivery. In this case, th1 wakes up
th2 directly and th3 indirectly. We predict the minimum time
advance between each thread segment pair considering both
direct or indirect event notifications.
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Algorithm 6 Conflict Detection Using the Combined Prediction
Table for M Prediction Steps

1: bool Conflict(Thread th, Thread th2)
2: {
3: /*check the combined prediction table for data and time hazards*/
4: m = CT[th2.seg, th.seg] - 1;
5: if(m ≥ 0) then /*There are data conflicts within M scheduling steps*/
6: /*th2 may enter into a segment before th and cause data hazards*/
7: if(th2.timestamp + NTimem[th2.seg]<th.timestamp) then
8: return true;
9: end if

10: else if (M < MFP)
11: /*hazards may happen after M scheduling steps*/
12: if(th2.timestamp + NTimeM[th2.seg]<th.timestamp) then
13: return true; end if
14: endif
15: /*check event hazards*/
16: for all thw ∈ WAIT do
17: if(NTP[th2.seg, thw.seg] + th2.timestamp< th.timestamp) then
18: /*thw may wake up before th*/
19: check data and time hazards between thw and th; endif
20: end for
21: return false;
22: }

C. Conflict Detection for OoO PDES With Predictions

The OoO PDES scheduler issues threads out of the order at
each scheduling step only when there are no potential hazards.
With the help of predictive static analysis, we can optimize the
conflict detection algorithm to allow more threads to run OoO.

Algorithm 6 shows the conflict detection algorithm using
predition for M steps (M ≥ 0). Note that for M = 0, this
matches the original OoO PDES conflict detection Algorithm 2.

Assume that th1 and th2 are two threads in the simulation
of a model whose SG is Fig. 8(a). th1is ready to run in seg4
with timestamp (3:0), and th2 is still running in seg1 with
timestamp (1:0).

Conflict(th1) in Algorithm 2 will return true because th2 is
possible to enter seg2 with timestamp of (2:0) that is before th1.
Thus, the scheduler cannot issue th1 OoO.

However, Conflict(th1) in Algorithm 6 will return false when
M = 1 or 2. With prediction information, the scheduler knows
that th1 (in seg4) will not have data conflicts with th2 after
its next scheduling step (then in seg2). Moreover, after th2
finishes seg2, the time for the next segment is at least (4:0),
which is after th1’s current time (3:0). Thus, it is actually
safe to issue th1 OoO at the current scheduling step. We
conclude, the prediction information allows to eliminate false
conflicts.

VI. HYBRID MULTITHREADING INFRASTRUCTURE

The OoO PDES scheduler aims at the most effective uti-
lization of the available hardware on the multicore host. This
requires an efficient multithreading infrastructure using user-
level and kernel-level threads. Kernel-level threads maintained
by the OS are needed to map parallel working threads onto
the multiple cores of the simulation host. However, OS ker-
nel threads carry a heavy overhead in system-calls for creation,
deletion, and context switching. In contrast, user-level multi-
threading libraries, such as QuickThreads [22], incur very little
overhead in cooperative multithreading, but can utilize only a
single core.

In order to maximally exploit the parallelism of multicore
machines and minimize the overhead for multiSthreading, we
propose a HybridThreads [23] infrastructure which runs user-
level threads (QuickThreads) on top of the kernel-level threads
(PosixThreads). Based on HybridThreads, our OoO simulator
benefits from both advantages, multiScore scalability and low
system overhead.

Fig. 10 compares the simulator infrastructure using the three
multithreading approaches. The traditional reference simulator
uses the QuickThreads library [Fig. 10(a)] and runs multiple
user-level threads on a single CPU core in cooperative fashion.
Here, only one thread is actively running at any time. The same
sequential scheduling can be implemented using kernel-level
PosixThreads, as shown in Fig. 10(b).

In contrast, Fig. 10(c) shows a parallel simulator built on
PosixThreads. Multiple threads can run on multiple CPU cores
under synchronization by the PDES scheduler. The thread-to-
core mapping and context switching is organized by the OS.

Fig. 10(d) shows our proposed HybridThreads approach
which creates one PosixThread per available CPU core. Each
thread is created at the beginning of the simulation and mapped
to its core (fixed affiliation) until the end. On top of these
kernel threads, user-level QuickThreads are created as needed
by the application and scheduled on top of and across the
kernel threads. Thus, these hybrid threads can run in parallel
on the available CPU cores. If more than one user-level thread
is mapped to a kernel thread, our HybridThreads library runs
these in cooperative fashion, just as regular QuickThreads.

Internally, the HybridThreads library only updates a threads’
stack with a new execution context during initialization. When a
context switch occurs, the current register values and program
counter are saved on its stack. The underlying kernel thread
then switches to the stack of the next user-level thread. Thus,
HybridThreads effectively runs multiple QuickThreads in par-
allel across the available CPU cores. The incurred overhead
due to thread synchronization and resource sharing at both user
and kernel levels is small and compensated by the performance
improvement through truly parallel execution.

Note that HybridThreads essentially behave the same as
QuickThreads when there is only one core available. On the
other hand, on a multiScore host where a core is available
for each thread, the HybridThreads library behaves practi-
cally just as PosixThreads. As such, HybridThreads make
it possible to switch among different threading schemes
dynamically.

VII. EXPERIMENTS AND RESULTS

In this section, we present experimental results of using the
proposed OoO simulator on real-world embedded applications
and also evaluate the performance of the state prediction and
the HybridThreads library. For our experiments, we use a SMP
capable server running 64-bit Fedora 12 Linux. The SMP hard-
ware specifically consists of 2 Intel Xeon X5650 processors
running at 2.67 GHz6 with six parallel cores each. Thus, in
total the server hardware supports up to 12 threads running in
parallel.

6To ensure consistent timing measurements, we have disabled the dynamic
frequency scaling and turbo mode of the processors.
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Fig. 10. User-level and kernel-level multithreading models in DE simulators. (a) Seq. DES using QuickThreads. (b) Seq. DES using PosixThreads. (c) PDES
using PosixThreads. (d) PDES using HybridThreads.

TABLE III
EXPERIMENTAL RESULTS FOR THE ABSTRACT DVD PLAYER EXAMPLE

(USING POSIXTHREADS)

A. Evaluation of OoO PDES

We have implemented our parallel simulator in a SpecC7-
based system design environment [24] and conducted exper-
iments on six multimedia applications that we built in-house
based on standard reference source code. All benchmark exam-
ples are tested to produce correct results.

We compare the compiler and simulator run times
with the traditional single-threaded reference and a syn-
chronous parallel implementation without OoO scheduling [5].
Tables III, VI, and VII show the speedup compared to the
sequential simulator in the left column. Table V shows the
cumulative speedup over different multithreading libraries.

1) Abstract Model of DVD Player: Our first experiment
uses a DVD player model similar to the model discussed in
Section I-A, where a H.264 video and a MP3 audio stream
are decoded in parallel. However, this model features four par-
allel slice decoders which decode separate slices in a H.264
frame, simultaneously. Specifically, the H.264 stimulus reads
new frames from the input stream and dispatches its slices to the
four slice decoders. A synchronizer block completes the decod-
ing of each frame and triggers the stimulus to send the next one.
The blocks in the model communicate via double-handshake
channels. According to profiling results, the workload ratio
between decoding one H.264 frame with 704 × 566 pixels and
one 44.1 kHz MP3 frame is about 30:1. Further, about 70% of
the decoding time is spent in the slice decoders (17.5% per unit).

Table III shows the statistics and measurements for this
model. Note that the CT is very sparse, allowing 74.11% of
the threads to be issued OoO. While the synchronous PDES
cannot gain performance due to in-order time barriers and
synchronization overhead, our OoO simulator shows more than
twice the simulation speed.

7Due to its similarity, our results are equally applicable to SystemC.

TABLE IV
STATISTICS FOR JPEG, H.264, FIBO, AND MANDELBROT EXAMPLES

2) JPEG Encoder Model: Our second experiment uses a
JPEG image encoder. The stimulus reads a BMP color image
with 3216 × 2136 pixels and performs color-space conversion
from RGB to YCbCr. Since, encoding of the three color com-
ponents (Y, Cb, and Cr) is independent, our JPEG encoder
performs the DCT, quantization and zigzag modules for the
colors in parallel, followed by a sequential Huffman encoder at
the end. The JPEG monitor collects the encoded data and stores
it in the output file.

To demonstrate models at different abstraction levels, we
have created four models (specification, architecture mapped,
scheduling refined, and network refined) with increasing amount
of implementation detail, down to a network model with
detailed bus transactions. Table IV lists the experimental results
and shows that about 80% of all threads can be issued OoO.

Tables V and VI show the corresponding compiler and sim-
ulator run times. While the compile time increases about 10%,
the OoO simulation speed improves by more than 260% over
the synchronous simulator. Moreover, for the JPEG encoder,
our simulator is at least 2 times as fast as the reference imple-
mentation using QuickThreads, which clearly shows the benefit
of parallelization.

3) Detailed H.264 Decoder Model: Our third experiment
simulates a complex parallel video decoder based on the
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TABLE V
EXPERIMENTAL RESULTS FOR SIMULATING SIX EMBEDDED APPLICATION EXAMPLES (WITH CUMULATIVE SPEEDUP)

H.264/AVC standard [25]. While this model is at the highest
level similar to the video part of the abstract DVD player, it
contains many more blocks at lower levels which implement
the complete H.264 reference application consisting of about
40 000 lines of code. Internally, each slice decoder consists of
complex H.264 decoder functions including entropy decoding,
inverse quantization and transformation, motion compensation,
and intraprediction. For our simulation, we use a video stream
of 1079 frames, 1280 × 720 pixels per frame, each with four
slices of equal size. The experimental results for this industrial-
size design are listed in Tables IV–VI, again for four models
at different abstraction levels, including a network model with
detailed bus transactions.

While the synchronous PDES shows almost no improvement
in simulation speed, our proposed simulator shows more than
70% gain when using PosixThreads since about a quarter of
the threads can be issued OoO (Table IV). Even with this large
complex model, the increase of compilation time (Table VI)
due to static conflict analysis is below 12%.

4) Parallel Timed Fibonacci Calculation: Our fourth appli-
cation Fibo_Timed calculates the Fibonacci series in parallel
and recursive fashion. Recall that a Fibonacci number is defined
as the sum of the previous two numbers, fib(n) = fib(n −
1) + fib(n − 2), and the first two numbers are fib(0) = 0 and
fib(1) = 1. Our Fibonacci model parallelizes the Fibonacci cal-
culation by letting two units compute the two previous numbers
in parallel. This parallel decomposition continues up to a user-
specified depth limit (in our case 5), from where on the classic
recursive calculation method is used.

This application uses shared variables to communicate the
input and calculated output values between the units, as well
as a few counters to keep track of the actual number of par-
allel threads (for statistical purposes). Thus, the threads are
not fully independent from each other. Also, the computational
load is not evenly distributed among the instances due to the
fact that the number of calculations increases by a factor of
approximately 1.618 (the golden ratio) for every next number.

Our model also has timing information back-annotated using
wait-for-time statements at each leaf block for the recursive
calculation. The time delay of a unit is determined by its
computational load, i.e., Tfib(n) = 1.618 ∗ Tfib(n − 1).

For this highly parallel application, synchronous PDES shows
almost 500% speedup and our OoO simulator doubles this when

using PosixThreads. The use of HybridThreads gains another
20% speedup on top of this.

The short compilation time (Table VI) increases 8% for the
synchronous PDES, and about 3× for OoO PDES. However,
the absolute compile time of only 2 s is negligible.

5) Mandelbrot Graphics Renderer: As representative of a
highly parallel and computation intensive graphics application,
we built a renderer model for visualization of Mandelbrot
images [26] with 512 parallel slices. Here, synchronous PDES
shows more than 12 × speedup and our OoO simulator shows
an extra 5% gain with PosixThreads. Notably, the use of
HybridThreads pays off with another 45% speedup.

6) H.264/AVC Video Encoder With Parallel Motion Search:
As a highly-complex multimedia application, we have paral-
lelized a video encoder based on the H.264/AVC standard.
Intra and interframe prediction are applied to encode an image
according to the type of the current frame. During interframe
prediction, the current image is compared to the reference
frames in the decoded picture buffer and the corresponding
error for each reference image is obtained. In this paper, mul-
tiple motion search units are processing in parallel so that the
comparison between the current image and multiple reference
frames can be performed, simultaneously. Our test stream is a
video of 95 frames with 176 × 144 pixels per frame. There
are five bi-directionally predicted slices (B-slices) between the
intracoded slices (I-slices) or forward predicted slices (P-slices).
Thus, among every five consecutive frames, four frames need
interframe prediction.

Table V shows that when using the same PosixThread library,
the synchronous PDES can hardly achieve any speedup while
the OoO PDES accelerates the simulation by almost 2×. While
the HybridThread approach adds another 3.6% speedup, none
of the parallel approaches can beat the sequential QuickThreads
simulator. For this application, the available parallelism is too
limited (a large part of computation is sequential) to make up
for the parallel simulation overhead.

B. Evaluation of the Hybrid Multithreading Approach

Overall, Table V shows quite different performance for the
multithreading libraries Quick-, Posix-, and HybridThreads. A
significant drop down to about 50% occurs from the user-level
QuickThreads to kernel-level PosixThreads. As indicated by
the cumulative speedup, this high cost of utilizing multiple
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TABLE VI
EXPERIMENTAL RESULTS FOR COMPILING SIX APPLICATION EXAMPLES

TABLE VII
COMPARISON OF MULTITHREADING APPROACHES USING MANDELBROT

WITH INCREASING NUMBER OF PARALLEL SLICES

CPU cores is generally recovered by the parallel simulators and
the HybridThreads approach. While for examples with limited
application parallelism, i.e., the H.264 codecs, QuickThreads
remains the fastest simulator, the HybridThreads approach is
the winner for the other four applications, as indicated by bold
numbers (fastest simulations) in Table V.

The righmost column compares HybridThreads directly
against PosixThreads for OoO PDES. Both perform equally
well in most cases, but HybridThreads can exploit its quick
context switch advantage for the highly parallel applications
Fibo_Timed and Mandelbrot, adding 20% to 45% speedup.

Table VII shows the difference between the multithreading
approaches using the Mandelbrot example with an increasing
number of parallel slices. While QuickThreads performs the
same for all cases, PosixThreads gains speed with increased
parallelism until there are significantly more threads than
parallel cores available, when performance decreases again.
HybridThreads, in contrast, shows steady performance gains
over PosixThreads and 10 times faster than QuickThreads.

C. Evaluation of State Prediction

The effect of scheduler state prediction (Section V) is demon-
strated in Table VIII which shows the simulation speed and
compile times of the H.264 decoder models for increasing num-
ber of prediction steps. Overall, more prediction steps achieve
higher simulator speed. On a closer look, one can also observe
significant speedup jumps after 4 and 8 prediction steps for
the spec model, and after 3 and 7 steps for the refined models
(which exhibit a reorganized hierarchy). For all these models,
simulation speed converges at 8 to 9 prediction steps.

Note that even for such large design models, the increase in
compile time due to the static prediction analysis is negligible.
The maximum number of predictions, i.e., the length of the

TABLE VIII
EFFECT OF STATE PREDICTION ON THE H.264 DECODER

longest path in the SG [20], can guarantee the most efficient
OoO simulation at almost no cost.

VIII. CONCLUSION

Highest simulator performance is critical for the efficient vali-
dation of transaction-level design models. In this paper, we have
presented a novel OoO scheduling technique for multicore par-
allel simulation of system-level models. Our approach breaks
the simulation-cycle barrier of traditional simulation by localiz-
ing the simulation time for parallel threads, carefully delivering
notified events, and handling a dynamically managed set of sim-
ulation queues. Potential data conflicts between parallel threads
are prevented by conservative and predictive compile-time anal-
ysis based on a SG of the application. Using fast CT lookups,
our OoO scheduler can quickly make decisions at run-time and
issue more parallel threads than synchronous PDES. At the
same time, we make use of a hybrid multithreading infrastruc-
ture that combines the benefits of multicore kernel-level threads
and low-overhead user-level threads for truly parallel execution
with fast context-switching.

Our experimental results show that, with only a small
increase in compile time, our simulator is significantly faster
than the traditional sequential reference implementation, as
well as a synchronous PDES implementation. Notably, our
OoO PDES technique fully maintains SLDL simulation seman-
tics and is applicable, without loss of accuracy, to C-based
system-level models at any abstraction level.

In future work, we plan to further extend and optimize the
static conflict analysis (i.e., add pointer analysis) and look into
additional methods to further improve the simulation speed
(e.g., many-core target platforms).
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