Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A Step-by-Step Implementation of DeepBehavior, Deep Learning Toolbox for Automated Behavior Analysis.

Published Web Location

https://doi.org/10.3791/60763
Abstract

Understanding behavior is the first step to truly understanding neural mechanisms in the brain that drive it. Traditional behavioral analysis methods often do not capture the richness inherent to the natural behavior. Here, we provide detailed step-by-step instructions with visualizations of our recent methodology, DeepBehavior. The DeepBehavior toolbox uses deep learning frameworks built with convolutional neural networks to rapidly process and analyze behavioral videos. This protocol demonstrates three different frameworks for single object detection, multiple object detection, and three-dimensional (3D) human joint pose tracking. These frameworks return cartesian coordinates of the object of interest for each frame of the behavior video. Data collected from the DeepBehavior toolbox contain much more detail than traditional behavior analysis methods and provides detailed insights to the behavior dynamics. DeepBehavior quantifies behavior tasks in a robust, automated, and precise way. Following the identification of behavior, post-processing code is provided to extract information and visualizations from the behavioral videos.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View