Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Preclinical and clinical activity of DZD1516, a full blood-brain barrier-penetrant, highly selective HER2 inhibitor.

Abstract

Background

Patients with HER2-positive metastatic breast cancer (MBC) are at high risk of developing central nervous system (CNS) metastases. A potent and selective HER2 inhibitor with good blood-brain barrier (BBB) penetration is highly desirable.

Methods

The design and structure-activity relationship of DZD1516 was described. The potency and selectivity of DZD1516 were determined by enzymatic and cellular assays. The antitumor activity of DZD1516 monotherapy or in combination with HER2 antibody-drug conjugate was assessed in CNS and subcutaneous xenograft mouse models. A phase 1 first-in-human study evaluated the safety, tolerability, pharmacokinetics, and preliminary antitumor activity of DZD1516 in patients with HER2+ MBC who relapsed from standard of care.

Results

DZD1516 showed good selectivity against HER2 over wild-type EGFR in vitro and potent antitumor activity in vivo. Twenty-three patients were enrolled and received DZD1516 monotherapy treatment across six dose levels (25-300 mg, twice daily). Dose-limiting toxicities were reported at 300 mg, and thus 250 mg was defined as the maximum tolerated dose. The most common adverse events included headache, vomiting, and hemoglobin decreased. No diarrhea or skin rash was observed at ≤ 250 mg. The mean Kp,uu,CSF was 2.1 for DZD1516 and 0.76 for its active metabolite DZ2678. With median seven lines of prior systemic therapy, the best antitumor efficacy in intracranial, extracranial and overall lesions was stable disease.

Conclusions

DZD1516 provides positive proof of concept for an optimal HER2 inhibitor with high BBB penetration and HER2 selectivity. Further clinical evaluation of DZD1516 is warranted, with the RP2D being 250 mg BID.

Clinicaltrials

gov identifier NCT04509596. Registered on August 12, 2020; Chinadrugtrial: CTR20202424 Registered on December 18, 2020.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View