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EPIGRAPH

There is no such thing as a photon.

Only a comedy of errors and historical accidents

led to its popularity among physicists and optical scientists. . .

There are very good substitute words

for “photon” (e.g., “radiation” or “light”)

and for “photonics” (e.g., “optics” or “quantum optics”).

—Willis Lamb, Jr. [1]
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Silicon Photonics with Applications to Data Center Networks
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In data center applications, fiber-based optical interconnects can be used to

provide point-to-point links enabling high-bandwidth, inter-rack, data communica-

tions. In order to provide for future network scalability, which must be able to han-

dle ultra-large data flows and bandwidth-intensive requests, optical technologies

are increasingly introduced to different levels of the data center architecture to en-

able a variety of transparent network or all-optical networking schemes. However,

the use of bulk optical components, which take up valuable rack-space real estate,

can be extremely energy and cost prohibitive, especially when scaled up to the size

of industrial warehouse-scale computing and considering that predictions of future

data center networks are expected to contain millions of nodes. As such, we study

chip-scale, silicon photonic, integrated circuits and their use as the optical hardware
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in future data center implementations. This work describes aspects of the design

and integration of silicon photonic devices, which can be used for high-bandwidth,

multi-channel, wavelength division multiplexed, optical communications. Exam-

ples of silicon photonic subsystems are discussed, including the realization of an

on-chip channelized spectrum monitor and a network-node-on-a-chip. These op-

tical integrated circuits are meant to replace bulk optical components with their

functional equivalents on monolithic silicon. This work demonstrates that silicon

photonics may be advantageous in meeting the urgent hardware-scaling demands

of high-bandwidth, multi-user, communication networks.
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Chapter 1

Introduction

1.1 Silicon photonics and data centers

The present work is concerned with monolithically integrated optics on a

silicon platform, i.e. silicon photonics. Fueled by modern society’s consumption

of digital electronics, silicon manufacturing technology represents an extremely

mature process that has had half-a-century of continuous, law-like [4], exponential

improvements and breakthroughs [5]. Indeed, as of this writing, the current state of

the art, in the silicon manufacturing of end-user microelectronics, includes devices

with critical dimensions of ∼14 nm, which are fabricated on 300-mm substrates,

with 450-mm substrates on the horizon. Therefore, one of the benefits of silicon

photonics is the ability to leverage an already mature and large-scale manufac-

turable process for the realization of optical integrated circuits. Additionally, since

silicon waveguide widths tend to be between 200–2000 nm or larger, older fabrica-

tion technologies may be utilized; these older processes being more reliable, more

accessible1, and less costly. Of course, fabricating optics on a CMOS-compatible

process allows for the monolithic integration of electronic CMOS circuitry with

active optical devices such as switches, modulators, reconfigurable filters, etc.

Some of the original motivation for silicon photonics had to do with on-chip

1 Indeed, it is likely that only the “select-few” key industry organizations would have access
to a 14-nm process, whereas multi-project wafer runs on less advanced processes are commonly
utilized by university research groups and small companies.

1
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and off-chip optical interconnects [6, 7]. Upwards of 80% of the power consumption

in a modern microprocessor goes into driving the long copper lines that route the

electrical signals. This power dissipation occurs, in part, due to resistive losses and,

although possibly minimized, still unavoidable impedance mismatches. Dielectric

waveguiding, on the other hand, which is provided by silicon photonics, mitigates

such blatant energy waste in the interconnect by completely removing from the

equation the R’s, L’s, and C’s of electronic wires.2 These are the parameters that

describe an electromagnetic wave guided by a conductor (i.e. an electronic signal

propagating down a wire). In an optical dielectric waveguide, these parameters are

replaced solely by the refractive index, which does not have associated with it I2R

losses or RC and L/R time delays. Furthermore, electronic interconnects exhibit

maximum bit rates that scale as A/L2 [6], where A is the cross-sectional area of

the wire and L is its length. For denser integration, A can only get smaller while

L might get larger. The bit rate of an optical waveguide, however, could better

approach the Shannon limit.

While the foregoing application of silicon photonics is important, the present

work focuses on a different application: data-center networks. In a sense, data cen-

ters are at the core of the internet, with virtually all internet traffic ending up in

a data-center server. With the massive popularization, within the last decade, of

cloud computing, cloud storage, streaming media, and mobile computing devices,

data-center traffic has shifted from a linear growth model to a 31% compounded

annual growth rate [8]. Such massive growth may be a challenge for future scal-

ability and lead to network congestion. Additionally, the physical growth of the

amount of hardware needed to support the usage trends has caused an exponential

increase in the collective power consumption of data centers [9]. Indeed, internet

traffic is projected to make up 10% of the world’s energy usage by 2018 [10].

To help combat the rapid growth in the bandwidth demand of data-center

networks, all-optical networking technology is being introduced, for rack-to-rack

and intra-rack communications, to replace bandwidth-limiting electronic compo-

nents and cabling [11, 12, 13]. However, future data-center networks are expected

2 Resistance, inductance, and capacitance.
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to scale to millions of nodes [14, 15], which will require their components to be

compact, energy efficient, and easily manufacturable. This poses a problem for

conventional off-the-shelf optical components, which are bulky, consume many

watts of power, and are relatively expensive to manufacture. Therefore, silicon

photonics, which can be manufactured relatively inexpensively due to wafer-scale

processing3, becomes an obvious candidate for use in next-generation data-center

networks.

1.2 ITU-T 100-GHz telecommunications grid

The Telecommunication Standardization Sector (ITU-T) of the Interna-

tional Telecommunication Union (ITU) specifies several frequency grids (i.e. chan-

nel plans) for use in communications applications based on wavelength division

multiplexing (WDM) [17, 18]. In dense WDM (DWDM) applications, the ITU-T

channels are equally spaced in frequency; i.e. they are not equally spaced in wave-

length. One of the more popular grids is the 100-GHz-spaced grid. Throughout

this dissertation, we make use of the 100-GHz grid, and so we summarize the grid

in Table 1.2 for quick reference. The MORDIA network, which we will reference

on several occasions, also makes use of the 100-GHz grid. The channels in use by

MORDIA are highlighted in Table 1.2.

Plus or minus a channel or so [19], channels 16–59 make up the telecommuni-

cations C-band; this is the so-called “erbium window,” or the range of wavelengths

most commonly amplifiable by erbium-doped fiber amplifiers. Lower frequency

channels that are listed in Table 1.2 are part of the L-band; higher frequency

channels in the table are part of the S-band. A convenient way to remember the

table is to recognize that the channel numbers are precisely the last two digits of

the corresponding frequency. For example, the last two digits of 195.1 THz are

5 and 1 ; therefore, this corresponds to Ch. 51. To quickly remember the corre-

sponding wavelength, one needs only to divide the velocity of light by the desired

3 A colloquialism that has recently emerged, paraphrased ad lib. by the present author, is
that, when under the purview of optics, “CMOS” should stand for “cheaply manufacturable
optical subsystems” [16].
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frequency on the fly.

Table 1.1: ITU-T 100-GHz telecommunications grid. Highlighted channels are
used by the MORDIA network.

Channel 
No.

Frequency 
(THz)

Wavelength 
(nm)

Channel 
No.

Frequency 
(THz)

Wavelength 
(nm)

  1 190.1 1577.03 37 193.7 1547.72
  2 190.2 1576.20 38 193.8 1546.92
  3 190.3 1575.37 39 193.9 1546.12
  4 190.4 1574.54 40 194.0 1545.32
  5 190.5 1573.71 41 194.1 1544.53
  6 190.6 1572.89 42 194.2 1543.73
  7 190.7 1572.06 43 194.3 1542.94
  8 190.8 1571.24 44 194.4 1542.14
  9 190.9 1570.42 45 194.5 1541.35
10 191.0 1569.59 46 194.6 1540.56
11 191.1 1568.77 47 194.7 1539.77
12 191.2 1567.95 48 194.8 1538.98
13 191.3 1567.13 49 194.9 1538.19
14 191.4 1566.31 50 195.0 1537.40
15 191.5 1565.50 51 195.1 1536.61
16 191.6 1564.68 52 195.2 1535.82
17 191.7 1563.86 53 195.3 1535.04
18 191.8 1563.05 54 195.4 1534.25
19 191.9 1562.23 55 195.5 1533.47
20 192.0 1561.42 56 195.6 1532.68
21 192.1 1560.61 57 195.7 1531.90
22 192.2 1559.79 58 195.8 1531.12
23 192.3 1558.98 59 195.9 1530.33
24 192.4 1558.17 60 196.0 1529.55
25 192.5 1557.36 61 196.1 1528.77
26 192.6 1556.55 62 196.2 1527.99
27 192.7 1555.75 63 196.3 1527.22
28 192.8 1554.94 64 196.4 1526.44
29 192.9 1554.13 65 196.5 1525.66
30 193.0 1553.33 66 196.6 1524.89
31 193.1 1552.52 67 196.7 1524.11
32 193.2 1551.72 68 196.8 1523.34
33 193.3 1550.92 69 196.9 1522.56
34 193.4 1550.12 70 197.0 1521.79
35 193.5 1549.32 71 197.1 1521.02
36 193.6 1548.51 72 197.2 1520.25



Chapter 2

Nonlinear Loss

2.1 Overview

Silicon photonics offers an interesting platform to study nonlinear optics

[20, 21, 22, 23, 24, 25, 26, 27], due in part to its relatively strong χ(3) and Raman

nonlinearities [28] as well as the ability to observe a χ(2) nonlinearity via lattice

strain [29, 30, 31]. In addition to these qualities, silicon, being a semiconduc-

tor, suffers significantly from the “linear” impairment of free-carrier absorption

(FCA) [32] and the nonlinear impairment of two-photon absorption (TPA) [22].

As we will show, the dependence of FCA on TPA causes the FCA mechanism

to become highly nonlinear. The present chapter is concerned with the foregoing

nonlinear impairments. Specifically, in the design of silicon photonic circuits, it

is important to know, via design and simulation, the losses that can be expected

as well as if those loses can be mitigated. In what follows, we discuss methods

to predict and mitigate the effects of FCA and TPA at varying degrees of optical

power. Additionally, we discuss the prediction of intensity-dependent loss, which

occurs due to the nonlinearity of the extinction mechanisms.

2.2 Free carrier absorption

Intrinsic silicon, having a bandgap of 1.12 eV, is transparent to light that

has a wavelength longer than ∼1.11 µm. This transparency occurs because of a

5
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filled valence band and a nearly “empty” (∼1010 electrons/cm3) conduction band.

Electrons in lower bands are unable to move into the fully occupied valence band;

meanwhile, electrons in the valence band require more energy than the light is able

to endow for them to move into the conduction band. If, however, the conduction

band was not depleted, then the free carriers in that band could easily move

to higher bands by absorbing the otherwise unabsorbable light. This absorption

mechanism is termed free carrier absorption (FCA). A similar argument applies for

the population of free holes in the valence band. These free carriers (i.e. conduction-

band electrons or valence-band holes) can be populated by the usual means of

doping, photogeneration, etc.

Applying the Drude model to a semiconductor yields the following expres-

sion for the intensity attenuation coefficient due to FCA [32, 20]:

αFCA =
e3

ε0cnω2

(
N

µNm∗2N
+

P

µPm∗2P

)
, (2.1)

where e is the elementary charge, ε0 is the permittivity of free space, c is the

velocity of light, n is the refractive index, ω is the angular frequency of light, N

and P are electron and hole concentrations, µ is the carrier mobility, and m∗ is

the effective mass. In the literature, it is common to express the foregoing as

αFCA = σNN + σPP, (2.2)

where σ is the FCA cross-section, which is an empirical parameter. The celebrated

Soref-Bennett result is σN = 8.5 Mbarns and σP = 6.0 Mbarns at 1550 nm for

silicon [32, 33]. At 1300 nm, σN = 6.0 Mbarns and σP = 4.0 Mbarns. Since the

community is often interested in cases where N = P (e.g. during photogeneration)

and λ = 1550 nm, the literature sometimes represents (2.2) as

αFCA = σNEHP, (2.3)

where σ = 1.45×10−17 cm2 and NEHP is the number of electron-hole pairs [20, 34].

In the present work, in order to keep as much generality as possible, we use (2.2)

with

σN = 1.24× 10−9 × λ2

n
,

σP = 8.50× 10−10 × λ2

n
.

(2.4)
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Figure 2.1: Optical attenuation in silicon, due to free carrier absorption, at a
wavelength of 1550 nm. The effects of conduction-band electrons and valence-
band holes are shown separately and can be summed as necessary.

These expressions for the cross-sections were obtained by curve fitting, using the

four coefficients obtained by Soref and Bennett, while retaining the λ2

n
N and λ2

n
P

dependencies seen in (2.1). A plot of FCA loss, using our expressions for the

FCA cross-sections with λ = 1550 nm, is shown in Fig. 2.1. Strictly speaking,

(2.4) is only applicable at near-infrared telecommunications frequencies. Further

generalizations, appropriate in the mid-infrared, are provided in the literature [35].

2.3 Two-photon absorption

In semiconductor waveguiding, the frequency ν of the light that is used is

chosen such that the photon energy hν (h being Planck’s constant) is less than

the bandgap Eg of the semiconductor. The semiconductor is thus transparent to

the light. There is a fundamental process, however, where normally transparent

frequencies may be absorbed by the semiconductor.

Two-photon absorption (TPA) in semiconductors is a process in which sub-

bandgap light (i.e. hν < Eg) is absorbed by the semiconductor and causes the
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photogeneration of an electron-hole pair (EHP). This process occurs via the simul-

taneous absorption of two photons and requires that 2hν ≥ Eg; thus, the energy

of two photons is transferred to the excitation of a single EHP. Physically, EHPs

represent the existence of free carriers; i.e. conduction-band electrons and valence-

band holes. These mobile electrons (holes) are easily excitable to higher (lower)

bands through the standard single-photon absorption process; this is termed free

carrier absorption (FCA). Therefore, in the presence of TPA, the light actually

suffers from two distinct absorption mechanisms: TPA and TPA-induced FCA.

FCA, in an equilibrium sense, can usually be considered a linear absorption

process that is governed by the usual Beer-Lambert law:

dI

dz
= −αlinI, (2.5)

where I is the optical intensity, z is the coordinate in which the light propagates

with respect to, and

αlin = αFCA + αscat (2.6)

is the usual intensity attenuation coefficient; αscat contains the effects of other

attenuation mechanisms — most commonly scattering. On the other hand, TPA

is an inherently nonlinear absorption process [20, 22]:

dI

dz
= −αTPAI

2, (2.7)

where αTPA is the TPA coefficient, which plays a similar role to αlin in (2.5)

(i.e. αTPA determines the strength of the TPA process — larger values of αTPA in-

crease the number of TPA events that occur). In silicon, αTPA ∼ 0.5−1.5 cm/GW

at a wavelength of 1550 nm [28], signifying that TPA is a relatively weak process.

For example, momentarily considering TPA as an isolated process and given a typ-

ical silicon waveguide cross-section of 0.1 µm2, 250 mW of power must be coupled

into the waveguide for the light to suffer a loss of 1 dB in 1 cm of propagation

distance, which is on par with typical passive waveguide loss due to fabrication im-

perfections, sidewall scattering, etc. Actually, as we will elucidate below, a more

appropriate estimate is 100 mW due to the additional effect of FCA. Through-

out the present work, we will invoke a value of 1 cm/GW for αTPA. Because
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Figure 2.2: Ridge waveguide that doubles as a PIN diode. The effective lifetime
of TPA-photogenerated free carriers in the core is reduced by the contact potential
formed in the diode. A reverse bias on the diode aids in the free carrier extraction
process.

we are talking about relatively large powers considering the size of the waveg-

uide cross-section, we note parenthetically that the silicon breakdown intensity is

∼ 6 GW/cm2 [36].

Relatively high optical powers on the order of 10 – 100 mW are common in

experiments involving Raman lasing [34, 37] and four-wave mixing [27] in silicon. In

these experiments, TPA and FCA are detrimental effects that limit the efficiencies

of the processes actually under investigation. The TPA process is fundamental to

the presence of high optical intensities; however, the induced FCA process can be

mitigated by simply sweeping the free carriers out of the vicinity of the optical mode

before they are able to absorb any light. This carrier sweep out is accomplished

by the structure in Fig. 2.2. In this ridge-waveguide structure, the waveguide core

is intrinsic or background-doped (. 1015 cm−3) silicon with nearby p+ and n+

regions. These heavily doped regions are ideally far enough away to not perturb

the optical mode but near enough to efficiently enable the extraction of free carriers

from the core. As such, the silicon waveguide doubles as a PIN diode. Under zero

bias, when free carriers are photogenerated via TPA, the built-in potential of the

PIN junction sweeps these free carriers away from the core producing a reverse

current; essentially a two-quantum version of the photovoltaic effect [38]. A reverse

bias across the junction increases the electrostatic field in the core and thus the

rate of removal of photogenerated carriers.

To model carrier sweep-out structures, we adopt a two-tier approach in the

use of modeling tools. A standard vectorial mode solver yields the field distribution
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over the cross-section of a waveguide. The corresponding time-averaged Poynting

vector then yields the distribution of intensity I(x, y). I can be scaled by an

arbitrary multiplicative constant to satisfy∫
d2rI = P, (2.8)

where P is the desired amount of power in the waveguide. We also recognize that

the left-hand side of (2.7) can be interpreted as the change in optical energy, per

unit volume, per unit time. Since we know that two quanta must participate in

every absorption event, we may write

dI

dz
= −2hνGTPA, (2.9)

where GTPA is the rate of absorption events per unit volume. GTPA is therefore

also the generation rate of EHPs per unit volume. Comparing the foregoing with

(2.7), we find that the EHP generation rate due to TPA is

GTPA =
αTPA

2hν
I2; (2.10)

i.e. the modal solution directly gives us the TPA generation rate, which is appro-

priate for use in a finite-element method (FEM) solution to the carrier dynamics.

A commercial semiconductor FEM tool, such Silvaco Atlas, can be used to

model the structure of Fig. 2.2 once GTPA is known. The FEM tool solves the

carrier transport equations [38]:

∂N

∂t
= G−R + µNN∇ · E + µNE · ∇N +DN∇2N,

∂P

∂t
= G−R− µPP∇ · E− µPE · ∇P +DP∇2P,

(2.11)

where E is the electrostatic field (which we consider to be distinct from the electric

field of the optical mode), D is the carrier diffusivity, R is the EHP recombination

rate, and G = GTPA + Gother is the EHP generation rate, which includes TPA as

well as other effects such as thermal generation, impact ionization, etc. The solu-

tions are the carrier concentrations N and P subject to the geometrical boundary

conditions of the structure as well as the applied bias.
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With N and P known throughout the structure, the effective lifetimes of

the free carriers are [20, 39, 40]:

τ eff
N =

〈N〉
〈G〉 ,

τ eff
P =

〈P 〉
〈G〉 ,

(2.12)

where the notation

〈·〉 =

∫
(·)Id2r (2.13)

represents a weighted average with respect to the optical mode. The physical

interpretation of the effective lifetimes is that TPA-generated free carriers only

remain in the vicinity of the optical mode for a limited amount of time, after which

their presence can no longer affect the light. This temporal period intrinsically

exists due to recombination, but can be shortened by the presence of the junction

field that serves to sweep free carriers away from the optical mode. In summary,

a mode solver implicitly yields the TPA generation rate, which is then fed into

an FEM semiconductor solver. The semiconductor solutions, however, must then

be averaged over the original modal solution to quantify the mitigation of TPA-

induced FCA.

As an example, we model the structure in Fig. 2.2 with a background p-

type concentration of 1015 cm−3, 1018 cm−3 in the heavily doped regions, w =

650 nm, h = 220 nm, t = 70 nm, d = 900 nm, and λ = 1550 nm. We also take

αTPA = 1 cm/GW [28] and common values of 100 ns for the Shockley-Reed-Hall

recombination lifetime [41, 42] and 100 cm/s for the surface recombination velocity

[43, 44]. For this geometry, the fundamental TE mode exhibits a modal phase

index of 2.648 and an effective area of 0.158 µm2. Various results of coupling

the modal solution with the semiconductor FEM solver are plotted in Fig. 2.3.

Specifically, in Fig. 2.3.a we see that the spatially-averaged carrier concentration

increases with increasing intensity as a result of TPA. In fact, intensity thresholds

are apparent where the rate of increase occurs much faster; these are the intensities

at which TPA is no longer a weak effect. Comparing Fig. 2.3.a to Fig. 2.3.b, we see

the relation between increased carrier concentrations and the effective free-carrier

lifetimes. When a reverse bias is applied, the carriers are swept away from the
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optical mode and a decrease in lifetime is observed. For the sake of comparison,

we also plot in Figs. 2.3.a–b the effects of forcing an open-circuit condition on the

junction; this is a forward-biased condition such that no current is allowed to flow

through the device. At low intensities, the effective lifetime is actually increased

because the forward bias causes a low-level of injection of additional free carriers

into the junction, which follows with it a decrease in the electric field throughout

the junction. At all biases, the lifetimes are asymptotic at large intensities to

the same lifetime. At these high optical intensities, the carrier concentrations

are so large that they screen the electrostatic field of the junction. This lifetime

asymptote is the lifetime that the structure would exhibit at all intensities if the

p+/n+ regions were not present in the structure.

Going further, we analyze the foregoing example at zero bias and an opti-

cal intensity of 100 mW while varying either the background dopant concentration

(Fig. 2.4.a) or the surface recombination velocity (Fig. 2.4.b). In the former case,

we see that there is no benefit of switching to a more intrinsic substrate since

the TPA lifetime does not vary much at background dopant concentrations lower

than ∼ 1015 cm−3. In the latter case, we see that the junction could be aided in

decreasing TPA lifetime by increasing the surface recombination velocity. Such an

effect, however, is very weak at 0 V and methods to increase the surface recombi-

nation, such as increased sidewall roughness, would add more in scattering loss to

the structure than is saved in FCA loss.

As a final example, we change the core height to h = 340 nm and plot

the total free-carrier concentration and average free-carrier lifetime, as functions

of optical intensity, for different applied biases, in Fig. 2.5. For this new geometry,

the modal phase index is 2.915 and the effective area is 0.172 µm2. Similar trends,

as in the previous example, are observed. The free-carrier lifetimes, however, are

slightly longer due to the increased size of the waveguide core.
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Figure 2.3: Simulation of the swept-carrier structure in Fig. 2.2 with 1015 cm−3

background p-type concentration, 1018 cm−3 p+/n+ concentrations, w = 650 nm,
h = 220 nm, t = 70 nm, d = 900 nm, and λ = 1550 nm. This structure yields an
effective modal area of 0.158 µm2. a) The sum of 〈N〉 + 〈P 〉 is plotted. At low
intensities, 〈N〉+〈P 〉 = 〈P 〉 is equal to the background doping. At high intensities,
the sum is due almost completely to TPA. b) The mean of

〈
τ eff
N

〉
and

〈
τ eff
P

〉
is

plotted. The high-intensity asymptote is the effective lifetime in the absence of
the p+/n+ regions; it prevails at high intensities because the large number of
TPA-generated free carriers serves to screen the electric field of the junction. At
lower intensities, the junction serves to decrease the lifetime from the asymptotic
value. Reverse biasing also helps to decrease the carrier lifetimes. c) The average
lifetime of (b) plotted as a function of reverse bias at 100-mW intensity. A reverse
bias of ∼5 V aids in decreasing carrier lifetime. Further increase of the reverse
bias has only a minuscule effect in further decrease of the carrier lifetime.
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with 100-mW optical intensity, showing the effects on TPA-generated carrier life-
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combination velocity. Short circuit refers to zero applied bias across the junction;
open circuit refers to zero current through the junction.
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Figure 2.5: Simulation of the swept-carrier structure in Fig. 2.2, similar to
Fig. 2.3 and with similar interpretations, but with h = 340 nm. For this example,
the effective modal area is 0.172 µm2.
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2.4 Propagation loss

In this section, our goal is to predict the amount of loss that will be suffered

in a given length of waveguide in the presence of loss due to linear scattering, TPA,

and FCA. Combining (2.5) and (2.7) yields the governing equation that must be

solved:
dI

dz
= −αscatI − αTPAI

2 − αFCAI. (2.14)

We have written the equation this way to signify that the FCA contribution, al-

though momentarily appearing and sometimes being linear, will lead to higher

order nonlinearities. Substituting (2.2), (2.10), and (2.12) into the foregoing, we

obtain
dI

dz
= −αscatI − αTPAI

2 −
(
σNτ

eff
N + σP τ

eff
P

) αTPA

2hν
I3. (2.15)

In writing the foregoing, we have recognized that

αFCA =
(
σNτ

eff
N + σP τ

eff
P

) αTPA

2hν
I2 (2.16)

is not constant with respect to intensity, whereas αscat and αTPA are true constants.

Since the intensity is attenuated during propagation, αFCA also becomes a spatially

varying parameter. Furthermore, based on the results of Figs. 2.3.b and 2.5.b, τ eff

is also an intensity-dependent parameter thus making the nonlinearity of (2.15)

possibly higher than order three. Although τ eff can be modeled by a logistic func-

tion, a direct solution to (2.15) is still difficult. Instead, for the sake of analytical

solutions, we describe a method of solution to (2.14) through a parameterization

of αFCA.

Without loss of generality, we consider the structure of Fig. 2.2 with a

background p-type concentration of 1015 cm−3, 1018 cm−3 in the heavily doped

regions, w = 600 nm, h = 250 nm, t = 90 nm, d = 900 nm, and λ = 1550 nm.

The average free-carrier lifetime is plotted in Fig. 2.6.a. Looking at this plot, we

recognize that there are low and high intensity regimes where τ eff is approximately

constant; this makes αFCA ∝ I2 as per (2.16). There is also a medium intensity

regime where τ eff is approximately linear in I; this implies that αFCA ∝ I3. Indeed,

we may use (2.2) to directly calculate αFCA, as in Fig. 2.6.b. The calculation verifies
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our assertion that

αFCA =


γ1I

2 Low intensity

δI3 Medium intensity

γ3I
2 High intensity

(2.17)

where γi and δ are fitting parameters as seen in Fig. 2.6.b. Therefore, we must

solve
dI

dz
= −αscatI − αTPAI

2 − γiI3 (2.18)

in the low (i = 1) and high (i = 3) intensity regimes and

dI

dz
= −αscatI − αTPAI

2 − δI4 (2.19)

in the medium intensity regime.
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Figure 2.6: Simulation of the swept-carrier structure in Fig. 2.2 with a back-
ground p-type concentration of 1015 cm−3, 1018 cm−3 in the heavily doped regions,
w = 600 nm, h = 250 nm, t = 90 nm, d = 900 nm, and λ = 1550 nm. a) The aver-
age free-carrier lifetime is plotted with divisions signifying three district intensity
regimes. I32 delineates the high and medium regimes; I21 delineates the medium
and low regimes. b) The three intensity regimes carry over more apparently into
the intensity-dependent FCA loss, which makes use of the individual carrier con-
centrations as per (2.2). The low and high intensity regimes correspond to the two
regions where αFCA ∝ I2; the medium intensity regime corresponds to the region
where αFCA ∝ I3.
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Unfortunately, closed-form I(z) solutions to (2.18) and (2.19) do not exist.

We may, however, invert these equations and find analytical solutions to the inverse

problem z(I). Although unusual in the physical sense, solutions of the form z(I)

need not bother us in the modeling sense. As long as the inverse solution z(I)

exhibits a one-to-one relation between z and I, we may form a lookup table that

effectively yields the desired information I(z). For simplicity, we will first consider

the case of αscat = 0; this greatly simplifies the solutions. We will completely relax

this condition later on. Without loss of generality, we will assume that the initial

input intensity is in the high regime. A piecewise solution is then obtained as the

intensity is diminished to lower-intensity regimes. If the input intensity initially

begins in a lower-intensity regime, we need only ignore higher-intensity regimes of

the piecewise solution.

With an input intensity of I0 > I32 and αscat = 0, we must solve

dI

dz
= −αTPAI

2 − γiI3 (2.20)

with i = 3. We may invert the foregoing and solve the integral equation∫
dz = −

∫
dI

αTPAI2 + γiI3
. (2.21)

Expanding the integrand on the right side,

z = k −
∫
dI

[
γi

α2
TPA

(
γi

αTPA + γiI
− 1

I

)
+

1

αTPAI2

]
, (2.22)

where k is a constant of integration. Completing the integration,

z = k +
1

αTPAI
− γi
α2

TPA

ln

(
1 +

αTPA

γiI

)
. (2.23)

Invoking the boundary condition I(z = 0) = I0 at the input, we can solve for k

and arrive at the solution

z(I) =
I−1 − I−1

0

αTPA

− γi
α2

TPA

ln

(
1 + αTPA

γiI

1 + αTPA

γiI0

)
. (2.24)

This solution is valid from I0 down to the point I = I32; we define

L32 ≡ z(I32) (2.25)
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as the corresponding spatial coordinate.

As we transition from the high to medium intensity regimes, we effectively

begin with an initial intensity I32; we must then solve

dI

dz
= −αTPAI

2 − δI4. (2.26)

For simplicity in the notation, we will consider that z(I32) = 0 and z(I < I32) > 0;

whatever z(I) solution we obtain in this medium intensity regime, we must add to

it L32. As before, we invert the differential equation and expand pertinent terms

into partial fractions to obtain

z = k −
∫
dI

(
1

αTPAI2
− δ

α2
TPA

· 1

1 + δ
αTPA

I2

)
. (2.27)

Integrating,

z = k +
1

αTPAI
+

√
δ

α3
TPA

tan−1

(√
δ

αTPA

· I
)
. (2.28)

Invoking the boundary condition I(z = 0) = I32 at the input, we can solve for k

and arrive at the solution

z(I) =
I−1 − I−1

32

αTPA

−
√

δ

α3
TPA

(
tan−1

(√
δ

αTPA

· I32

)
− tan−1

(√
δ

αTPA

· I
))

.

(2.29)

This solution is valid from I32 down to the point I = I21; we define

L21 ≡ z(I21) (2.30)

as the corresponding spatial coordinate.

As we transition from the medium to low intensity regimes, we effectively

begin with an initial intensity I21 and we resort back to the differential equation

(2.20), with solution (2.24), and γi = γ1. In using this solution, we may make the

substitution

I0 → I21 (2.31)

and consider that z(I21) = 0 and z(I < I21) > 0; whatever z(I) solution we obtain

in this low intensity regime, we must add to it L32 + L21.
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In summary, the solution to the nonlinear loss problem of (2.14), with

αscat = 0, is

z(I) =



I−1−I−1
0

αTPA
− γ3

α2
TPA

ln

(
1+

αTPA
γ3I

1+
αTPA
γ3I0

)
I0 ≥ I ≥ I32

L32 +
I−1−I−1

32

αTPA
−
√

δ
α3

TPA
(tan−1

(√
δ

αTPA
· I32

)
− tan−1

(√
δ

αTPA
· I
)

) I32 > I > I21

L32 + L21 +
I−1−I−1

21

αTPA
− γ1

α2
TPA

ln

(
1+

αTPA
γ1I

1+
αTPA
γ1I21

)
I ≤ I21

(2.32)

where I0 is the initial input intensity at z = 0. If I0 < I32, then the first row is

ignored and we make the substitutions I32 → I0 and L32 → 0. If I0 < I21, then

the first and second rows are ignored and we make the substitutions I21 → I0 and

L32 + L21 → 0.

Calculations of (2.32), using the data from Fig. 2.6, is plotted in Fig. 2.7

for several values of I0, which correspond to the three different intensity regimes.

This plot shows the clearly nonlinear behavior of the attenuation of highly intense

optical radiation as it propagates down the waveguide. The larger intensities suffer

much more attenuation as a result of contributing more free carriers via TPA. Nor-

malizing these data by the propagation distance z yields an effective attenuation

coefficient, as plotted in Fig. 2.8. This parameter, which lessens with propagation

distance as the intensity lessens, is a useful metric for comparing the nonlinear loss

with the usual linear loss parametrized by αscat, which tends to be on the order

of ∼1 dB/cm in a good fabrication process. From this normalization, we see that

the high intensity suffers from a gigantic amount of loss for the first centimeter of

propagation distance. The medium intensity suffers from a much smaller effective

loss, but one that is still comparable to the linear loss. The low intensity adds only

a small amount to the overall loss.

We now consider the solution of (2.14) with αscat > 0. In this case, we

must solve the piecewise differential equations (2.18) and (2.19) depending on

which intensity regime we are interested in. As before, the general method in-

volves inverting (2.18) and (2.19) and integrating to find z(I). For an initial input
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Figure 2.7: Calculations of (2.32) using the data from Fig. 2.6.
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intensity I0 at z = 0, the inverse solution is not pretty:

z(I) =



1
αscat

ln I0
I
− 1

2αscat
ln

αscat+αTPAI0+γ3I2
0

αscat+αTPAI+γ3I2

− 1
αscat

(
4αscatγ3

α2
TPA

− 1
)−1/2

(tan−1
1+

2γ3I0
αTPA√

4αscatγ3
α2

TPA

−1

− tan−1
1+

2γ3I
αTPA√

4αscatγ3
α2

TPA

−1
) I0 ≥ I ≥ I32

L32 + 1
αscat

ln I32

I

− 1
αscat

∑
j:δj3+αTPAj+αscat=0

δj2+αTPA

3δj2+αTPA
ln I32−j

I−j I32 > I > I21

L32 + L21 + 1
αscat

ln I21

I
− 1

2αscat
ln

αscat+αTPAI21+γ1I2
21

αscat+αTPAI+γ1I2

− 1
αscat

(
4αscatγ1

α2
TPA

− 1
)−1/2

(tan−1
1+

2γ1I21
αTPA√

4αscatγ1
α2

TPA

−1

− tan−1
1+

2γ1I
αTPA√

4αscatγ1
α2

TPA

−1
) I ≤ I21

(2.33)

where the summation in the middle row is over the roots of the cubic equation

appearing therein. If I0 < I32, then the first row is ignored and we make the

substitutions I32 → I0 and L32 → 0. If I0 < I21, then the first and second rows are

ignored and we make the substitutions I21 → I0 and L32 + L21 → 0.

As with the restricted solutions, we plot calculations of (2.33) in Fig. 2.9, for

several values of I0, using the data from Fig. 2.6. For these calculations, we assume

αscat = 1 dB/cm. Compared to the restricted solutions, we see that including a

non-zero value of αscat causes a quicker convergence of the three plotted curves.

Normalizing by the propagation distance z, as plotted in Fig. 2.10, shows that

the three cases converge to αscat. As the intensity is attenuated, TPA eventually

becomes negligible and linear loss becomes the predominant extinction mechanism.
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Figure 2.9: Calculations of (2.33) using the data from Fig. 2.6 and αscat =
1 dB/cm.
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Figure 2.10: a) The data of Fig. 2.9 normalized by the propagation distance.
This yields an effective attenuation coefficient that can be compared with the linear
attenuation coefficient αscat. b) A reduced-ordinate version of (a). Note that
all three curves converge to αscat as TPA becomes negligible due to the reduced
intensity.



Chapter 3

Certain Aspects on the Design of

Directional Couplers and

Adiabatic Ring Resonators

3.1 Overview

The ring resonator is a fundamental component in chip-scale integrated

optics [46, 47, 48]. On its own, the ring resonator is one of the simplest optical

implementations of an add-drop filter. Silicon ring resonators, by virtue of resonant

light exhibiting large intensities inside the resonator, and due in part to the tight

mode confinement provided by the high index contrast of silicon photonics, allow

for studies in nonlinear optics [25, 27, 49]. Lattices of coupled ring resonators give

rise to high-order filters in which the filter transmission spectra can be tailored

[50, 51, 52]. Various other types of configurations use ring resonators in more

complicated coupling schemes to achieve more freedom in the filter design method

[53, 54, 55, 56, 57, 58, 59]. At several points throughout the present work, we

make use of a recently proposed architecture of a ring resonator, which is formed

by a waveguide of non-constant width [60]. In the present chapter, we review key

aspects of conventional ring resonators and the design of the newer implementation.

A related component, auxiliary to ring resonators, inter alia, is the direc-

23
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tional coupler. In its simplest form, the coupler is merely two parallel waveguides

in close proximity. The proximity of the waveguides allows for evanescent cou-

pling of light in one waveguide to the other. As such, light can be routed from

one waveguide to another. The topic of directional coupling in optics has a rich

history of being well studied [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. The

standard textbook treatments of coupled mode theory [73, 74], as applied to di-

rectional couplers, treat one waveguide as a dielectric perturbation to the other,

through which scattering between the modes may occur. Due to the mathemat-

ical complexities involved in coupled mode theory, finite-difference time-domain

(FDTD) based methods are often done in which the simulated light is propagated

down a three-dimensional structure. Both methods can be computationally expen-

sive. Alternately, we champion an eigenvalue-based design method in which the

existence of the normal (transverse) modes of the directional coupler are assumed

a priori. This analysis yields a closed-form solution for the power-splitting ratio

of the directional coupler, given that the modal refractive index eigenvalues are

known. Such information can be easily obtained via a computationally inexpen-

sive, cross-sectional mode solver. In what follows, we review the application of this

method to the design of directional couplers.

3.2 Eigenvalue-based design of directional cou-

plers

3.2.1 Basic theory and methodology

Suppose two single-mode waveguides are brought into close proximity of

one another. The two waveguide modes exist as part of the two systems that are

the individual waveguides. The newly formed directional coupler, however, may be

considered as a system in its own right; this system exhibiting normal modes that

are linear combinations of the two individual waveguide modes. The symmetric

and anti-symmetric normal modes of the directional coupler may be expanded,
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respectively, as

|s〉 = Ss|1〉+ Ts|2〉,
|a〉 = Sa|1〉+ Ta|2〉,

(3.1)

where |1〉 and |2〉 are the modes of the two individual waveguides that constitute

the coupler when they are each separately considered in isolation. Each eigenmode

is normalized (〈i|i〉 = 1; i = s, a, 1, 2) and |s〉 and |a〉 form an orthonormal basis.

The total field at an arbitrary point z throughout the length L of the coupler can

be expanded in the basis of normal modes as

|E(z)〉 = Rse
iβsz|s〉+Rae

iβaz|a〉, (3.2)

where

βi =
niω

c
(3.3)

is the modal propagation constant and ni is the modal refractive index for sym-

metric and anti-symmetric normal modes (i = s, a) and 0 ≤ z ≤ L. The expansion

coefficients R, S, and T will be discussed below. For notational convenience, we

also define the quantity

O = 〈2|1〉. (3.4)

The amount of light in the mode |2〉 (i.e. in the second isolated-waveguide mode)

is then a projection of |2〉 over the total coupler field:

〈2|E(z)〉 = Rs(SsO + Ts)e
iβsz +Ra(SaO + Ta)e

iβaz. (3.5)

We are most interested in the case in which light enters the coupler at

z = 0 through Waveguide 1 (i.e. through mode |1〉) only; then, at z = L, (3.5) is

a measure of how much light is transferred from |1〉 into |2〉 . We thus have an

expression for the dimensionless power coupling coefficient

|κ|2 ≡|〈2|E(L)〉|2

=O2[R2
sS

2
s +R2

aS
2
a + 2RsRaSsSa cos((βs − βa)L)]

+ 2O[R2
sSsTs +R2

aSaTa +RsRa(SsTa + SaTs) cos((βs − βa)L)]

+ [R2
sT

2
s +R2

aT
2
a + 2RsRaTsTa cos((βs − βa)L)].

(3.6)
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Differentiating the foregoing with respect to wavelength gives the dispersion of the

coupling coefficient

d|κ|2
dω

=2RsRa(SsSaO2 + (SsTa + SaTs)O + TsTa)

× L

c
(nga − ngs) sin((βs − βa)L),

(3.7)

where ngi = ni + ω dni
dω

are the group indices of the symmetric (i = s) and anti-

symmetric (i = a) normal modes. If weak coupling prevails, then O is vanishingly

small [75] and (3.6) and (3.7) simplify to

|κ|2 = R2
sT

2
s +R2

aT
2
a + 2RsRaTsTa cos((βs − βa)L),

d|κ|2
dω

= 2RsRaTsTa
L

c
(nga − ngs) sin((βs − βa)L).

(3.8)

Equation (3.8) is the main result. Regarding the expansion coefficients

R, S, and T – they are related via projections of the modal fields. For example,

Rs = 〈E(0)|s〉 = Ss〈E(0)|1〉+ Ts〈E(0)|2〉 = Ss, (3.9)

where, in the last step, we invoked the boundary condition that light input into

the coupler is through Waveguide 1 only. Furthermore, if O ≈ 0, then

Ss ≈ 〈s|1〉, Ts ≈ 〈s|2〉. (3.10)

Similarly,

Ra = Sa ≈ 〈a|1〉, Ta ≈ 〈a|2〉. (3.11)

Therefore, knowledge of the isolated-waveguide and directional-coupler eigenmodes

gives the coupling coefficient and its dispersion via substitution of (3.9)-(3.11) into

(3.8).

As an example, consider a directional coupler made up of parallel, equal-

geometry waveguides. Both of the normal modes should exhibit equal-power con-

tributions from the two isolated-waveguide modes. Therefore, the (amplitude)

expansion coefficients are Ss = Sa = Ts = −Ta = 1/
√

2. Substitution into (3.8)

yields

|κ|2 = sin2

(
(βs − βa)L

2

)
(3.12)
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and
d|κ|2
dω

=
L

2c
(nga − ngs) sin((βs − βa)L). (3.13)

Equation (3.12) for the intensity coupling coefficient yields the immediate

interpretation of the operation of the directional coupler as the beating two waves

(the symmetric and anti-symmetric modes). As such, one may talk of the beat

wavenumber

βb ≡ βs − βa (3.14)

(i.e. a spatial beat frequency) of the directional coupler. The beat period or,

more appropriately named, beat length is then Lb = 2π/βb; this is the length a

directional coupler must be for no net transfer of power between the waveguides to

occur (i.e. power transfers completely from one waveguide, to the other, and then

completely back to the original waveguide). Of more practical interest is one-half

of the beat length

Lc ≡
π

βs − βa
=

λ

2(ns − na)
; (3.15)

this is the full-coupling length, or the length necessary for full power to transfer

from one waveguide to the other. We note that Lc is proportional to λ/2.

Equation (3.12) also implies that the normal modes must propagate with

different phase velocities for coupling to occur. Interestingly, there is no such con-

straint on the group velocities. In fact, (3.13) shows that if the normal modes

propagated with the same group velocity, then the dispersion of the coupling co-

efficient would be completely mitigated.

As an example of using the ideas of this section in the design of a di-

rectional coupler, we consider the cross-sectional geometry of two, coupled, silicon

ridge waveguides as diagrammed in Fig. 3.1.a. This geometry can be put into a nu-

merical cross-sectional mode solver. The eigenvalue solutions that are obtained are

the modal refractive indices of the symmetric and anti-symmetric normal modes1,

1 A cross-section mode solver (i.e. one that solves for transverse modes), for a given geome-
try, solves the Helmholtz equation, ∇2

tE = −β2E, where the transverse (i.e. two-dimensional)
Laplacian is utilized and E is the (three-dimensional) electric field vector. As such, the true
eigenvalue solutions are the propagation constants β. The modal refractive indices, which are
more common in practice, are simply a normalization of β as per (3.3).
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as plotted in Fig. 3.1.b. Also plotted is the mode index for the single- (i.e. iso-

lated) waveguide geometry. This is the refractive index that both waveguide modes

would share if they were spaced reasonably far apart (instead of 300 nm, as in the

diagram). The effect of evanescent coupling, between the two waveguides that

compose the directional coupler, is that the degenerate single-waveguide mode in-

dex, which is shared by the two waveguides, is split into the two normal modes of

the directional coupler.

With the knowledge of the refractive indices of the normal modes, one can

proceed to substitute them into the relevant equations and design the length of the

directional coupler. Invoking (3.15), we plot the full-coupling length in Fig. 3.1.c.

Due to dispersion, as discussed above, we see that full coupling at one wavelength

does not necessarily imply full coupling at another. To gain further insight into the

dispersion of coupling, we invoke (3.12) and plot the intensity coupling coefficient,

in Fig. 3.1.d, as a function of wavelength, for different lengths of the directional

coupler. We see that longer lengths of the coupler lead to stronger dispersion of the

coupling coefficient. Note that the longest coupling length that we have considered,

50 µm, is shorter than the shortest full coupling length plotted in Fig. 3.1.c. This

implies that the argument of (3.12) is less than π/2. Longer coupling lengths would

cause the curves in Fig. 3.1.c to “turn over,” first exhibiting a local maximum, and

then having completely negative slope, as the coupling coefficient is reduced back

towards zero as the coupler length approaches the first beat length, and so forth.

Further discussion of coupling dispersion2 is provided in Chapter 4. Curves, such as

the ones plotted in Fig. 3.1.c–d, are instrumental in properly designing a directional

coupler.

2 Dispersion, in the general-sense, has plagued optics since the time of Prof. Newton and
when he decided that indigo was just as prominent as and easily distinguishable from blue and
violet [76]. In the present work, the dispersion of directional coupling will be revisited on several
occasions. We note in passing, however, that almost all optical phenomena will be, to some
degree, dispersive.
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Figure 3.1: a) Cross-sectional diagram of a ridge-waveguide directional coupler.
b) Refractive indices of the two directional-coupler normal modes (symmetric and
anti-symmetric) as well as that of an isolated waveguide (WG). The evanescent cou-
pling of the two waveguides lifts the degeneracy of the otherwise isolated waveguide
modes into the the two non-degenerate normal modes. c) The full-coupling length
(i.e one-half of the beat length), calculated by using the results of (b) in (3.15).
d) Several dispersions of the intensity coupling coefficient, corresponding to dif-
ferent lengths of the directional coupler, calculated by substituting the previous
results into (3.12).
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3.2.2 Non-parallel sections

A realistic directional coupler, e.g. as in Fig. 3.2.b, is composed of both

parallel and non-parallel sections. The analysis above is strictly applicable to the

parallel section only. To generalize the analysis to the non-parallel waveguides,

it is useful to consider that, in the parallel-waveguide case, the transfer of power

between the two waveguides is due to the accumulation of phase

φpar =

∫ φpar

0

dφ =

∫ L

0

1

2
βbdz =

βbL

2
, (3.16)

which is the argument of (3.12). With reference to the geometry of Fig. 3.2.b,

it is therefore straightforward to generalize the foregoing to the non-parallel end

sections of the directional coupler:

φend = 2

∫ Lend/2

0

1

2
βb,end(z)dz, (3.17)

where βb,end(0) = βb and the factor of 2 occurs because there are two identical end

sections. The intensity coupling coefficient of (3.12) then becomes

|κ|2 = sin2

(
βbL

2
+ φend

)
. (3.18)

To determine φend, we assume a functional form for βb,end(z) [77],

βb,end(z) = βbe
−gend(z)/γ, (3.19)

where γ is a characteristic decay constant, which can be determined by model-

ing/measuring directional couplers of varying gaps, and gend(z) is the additional

gap in the end section such that gend(0) = 0 and g(z) = gstraight + gend(z). This

assumption is justified because the field decays exponentially when moving away

from the waveguide core, thus so too should the interaction decay as such when

separating two waveguides. Furthermore, since we do not know Lend a priori, as a

result of the rapid decease of (3.19), we may take the upper limit of integration in

(3.17) to infinity, thus writing

φend = βb

∫ ∞
0

e−gend(z)/γdz. (3.20)
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a)!

b)!
L!

Lend / 2! Lend / 2!

z!

g(z)!gstraight!

Figure 3.2: a) Ring resonator, evanescently coupled to a bus waveguide, as an
example of a realistic application/analysis of a directional coupler. b) Diagram
of the boxed section of (a); this is a realistic directional coupler in that the non-
parallel sections are also considered. The total length of the directional coupler is
L + Lend, where L is a physical (i.e. directly measurable) length, while Lend is an
effective length that is proportional to the line integral of the waveguide gap g(z).
For the purpose of integration, z = 0 occurs at the origin of the as-drawn z-axis.

To find a closed-form solution to the foregoing, we may invoke a parax-

ial approximation. First, we recognize that, geometrically, each waveguide bend

in Fig. 3.2 is one-quarter of a circle. Referring to the geometry of Fig. 3.3, we

transform the integral over length to one over angle:

φend = βbR

∫ π/2

0

e−
4R
γ

sin2 θ
2 cos θdθ. (3.21)

The physics of this equation is that the lessened exponential decay (relative to

(3.20)) is aided by the cos θ kernel, which acts as a type of obliquity factor (i.e. the

coupling between the individual-waveguide modes tends to zero as their propaga-

tion vectors each bank through an angle that tends to 90◦); thus the complete
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z(✓) = R sin ✓

✓R cos ✓

1

2
gend(✓) = R(1 � cos ✓) = 2R sin2 ✓

2

Figure 3.3: Right end of Fig. 3.2.b, showing the circular geometry of one of the
waveguide bends. This geometry allows for the calculation of φend by transforming
the integral over length to one over angle. The variables z and gend(z), as they
appear in Fig. 3.2.b, are projected onto line segments inside the circle of radius R
and parametrized with respect to the angle θ.

exponential decay seen in (3.20) is preserved. Under the paraxial approximation,

θ ≈ z

R
(3.22)

and

g(θ) = 4R sin2 θ

2
(3.23)

≈ Rθ2 (3.24)

≈ z2

R
. (3.25)

Therefore,

φend ≈
βb
2

√
πγR. (3.26)

Substituting this result into (3.18), we see that the effect of the end sections is to

give the directional coupler an effective length

Leff = L+ Lend, (3.27)

where

Lend =
√
πγR. (3.28)
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Abstract— Using the measured transmission spectrum of a
waveguide-coupled silicon microring, we develop an algorithm for
determining the wavelength dependencies (i.e., the dispersions) of
the coupling coefficients and loss of the ring. Our analysis recon-
structs the measured spectrum without use of Lorentzian fitting,
covers 15 free spectral ranges (FSR), and was performed from
∼1520 to 1570 nm, covering all of and extending past the C-band.
We demonstrate that the dispersion of the coupling coefficient
of a silicon-waveguide directional coupler considerably exceeds
(by a factor of ∼10) the modal refractive-index dispersions of its
constituent waveguides.

Index Terms— Directional couplers, dispersion engineering,
ring resonators, silicon photonics.

I. INTRODUCTION

S ILICON microring resonators are key building blocks
for modulators, filters, and resonantly-enhanced detectors.

A wideband parametric characterization of these resonators
is important for expanding their spectral ranges and total
usable bandwidths for use in on-chip interconnects. Extending
reported measurements that focus on fitting a transmission
spectrum with Lorentzian functions throughout only one or
two FSRs [1]–[5], we perform a wideband characterization
that spans 15 FSRs and demonstrate that coupling-coefficient
dispersions considerably exceed modal refractive-index disper-
sions in silicon directional couplers.

We analyzed a waveguide-coupled silicon ring resonator,
as shown in Fig. 1(a). Aside from being useful in its own
right, we envision that such a device can be utilized as a
common test structure in silicon-photonic integrated circuits.
Such test structures can exhibit relatively small footprints and
the lack of multiple couplers eliminates the possibility of
the confounding of multiple coupling coefficients [6]. Ridge
waveguides were fabricated on a silicon-on-insulator wafer
(250-nm silicon thickness) using electron-beam lithography
and reactive ion etching (160-nm etch depth). Using a scanning
electron microscope (SEM), the measured perimeter of the
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Fig. 1. a) SEM micrograph of the ring resonator. b) Measured spectrum and
its reconstruction via iterations on t and α. c)–e) Lineshapes corresponding to
the labels in (b). f) Measurement and its reconstruction; iterations on ϵ added.

ring/racetrack was 186 µm with a 10-µm bending radius
along the curves; waveguide widths were 530 nm (bus) and
550 nm (ring). An effective coupler length of 65 µm was
inferred by matching finite-element-method (FEM) simula-
tions of the measured geometry to the coupling-coefficient
data obtained below. Light was coupled to the chip via
polarization-maintaining tapered lensed fibers and polymer
spot-size converters overlaid on tapered silicon waveguides.
The transmission spectrum [Fig. 1(b)] was measured using a
swept-wavelength laser and photoreceiver.

II. FITTING METHOD

We developed an algorithm that is able to extract the
coupling and through coefficients and loss of a ring resonator,
that is coupled to a single waveguide, over arbitrarily many
FSRs. Previous work on the single-bus structure followed a
different track of focusing on the loss of the ring [7], [8].
Another study proposed a method for extracting the coupling
coefficients of the single-bus resonator [2]; however, the model
used did not focus on spanning and reconstructing several
FSRs [1]. Other methods for extracting the ring parameters
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inferred by matching finite-element-method (FEM) simula-
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that is coupled to a single waveguide, over arbitrarily many
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different track of focusing on the loss of the ring [7], [8].
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coefficients of the single-bus resonator [2]; however, the model
used did not focus on spanning and reconstructing several
FSRs [1]. Other methods for extracting the ring parameters

1041–1135/$31.00 © 2012 IEEE

a) b) 

Figure 3.4: a) SEM micrograph of a standard implementation of a ring resonator.
b) The corresponding transmission spectrum.

This is the same Lend that appears in (3.17), which was brushed underneath the

rug in (3.20) because it is only known a posteriori. If, for example, the bottom

waveguide in Fig. 3.2.b remained the same but the top waveguide were straight,

even in the end sections, then a similar analysis to the foregoing would yield

Lend =
√

2πγR. (3.29)

Clearly, other geometries are possible.

3.3 Adiabatic ring resonators

3.3.1 A review of conventional ring resonators

A standard implementation of a ring resonator is shown in Fig. 3.4.a. This

ring is in the “racetrack” configuration; i.e. two identical waveguide semi-circles

sandwich a section of two parallel waveguides — the four waveguides actually being

one and forming the ring. The (upper) bus waveguide is evanescently coupled to

the ring. In the micrograph, the ∼65-µm region, where the bus waveguide and

the ring are in close proximity, forms the directional coupler, which transfers light

between the bus and the ring.

If optical loss in the ring is nonexistent, and because there is only one

bus waveguide, the ring of Fig. 3.4.a would be an allpass filter; i.e. the transfer

function of the ring would exhibit a flat unity magnitude response, albeit with a
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non-trivial phase response. In the presence of loss, however, resonant light can be

“dropped” via the loss mechanism thus yielding a resonant spectrum as seen in

Fig. 3.4.b. Further details concerning the transmission spectra of ring resonators

are covered in Chapter 4. For now, we concern ourselves with the calculation of

the free spectral range (FSR) and, especially, adiabatic ring resonators, which we

shall define shortly.

The usual kinematic phase condition for the mth resonance (i.e. a null in

Fig. 3.4.b) is

φ = 2πm, (3.30)

where m is an integer. The phase φ is related to the propagation constant β of the

mode and the length L of the resonator via

φ = βL = n
ω

c
L

= n
2π

λ
L,

(3.31)

where β has been expanded into terms involving the velocity of light c, angular

frequency ω = 2πν, free-space wavelength λ, and the modal refractive (phase)

index n. At present, we are interested in the FSR, which is the spacing between

adjacent resonances in the transmission spectrum of the resonator. Combining the

foregoing two equations then subtracting the m + 1 resonant frequency from the

mth resonant frequency yields the following expressions for the FSR in terms of

either frequency or wavelength, respectively:

∆ν =
c

ngL
,

∆λ =
λ2

ngL
,

(3.32)

where

ng = n+ ω
dn

dω
(3.33)

is the modal group index, which we have obtained by recognizing that the phase

index n is a dispersive function of frequency.

Of paramount importance is (3.32). For example, from Fig. 3.4, we measure

the ring length to be 186 µm and the FSR to be 3.24 nm; therefore, by (3.32) we
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know the group index to be 3.99, without ever specifying details of the waveguide

cross-section. For the purpose of filter design, however, we usually want to meet

certain periodicity requirements in the transmission spectrum. In this case, the

prescription is to first design the waveguide cross-section, which yields a specific

ng, then to chose the resonator length that yields the desired FSR as per (3.32).

3.3.2 Geometry and free spectral range of adiabatic rings

We now move on to the topic of adiabatic ring resonators [60], of which two

examples are diagrammed in Fig. 3.5. Concentrating on the first example, this

structure is a resonator in which the waveguide width transitions adiabatically

between w1 at its narrowest points to w2 at its widest points. The purpose of

such a transition is to allow electrical contact to be made directly to the ring via

tethers that are located internal to the ring. For example, the entire structure of

3.5.a being silicon, the tethers, as well as narrow interior portions of the waveguide

at both of its widest regions, could be electrically doped thus forming a resistive

heater. Such a scheme allows for an efficient thermo-optic effect. Ideally, light

suffers from little scatter loss in this structure because it hugs the outer wall of the

waveguide as it propagates around a bend. To design such an adiabatic transition,

the outer wall of the ring is geometrically a circle with radius r, while the inner wall

is an ellipse with semi-major axis a and semi-minor axis b; the circle and ellipse

sharing a common center. The circular and elliptical parameters are connected via

w1 = r − a
w2 = r − b.

(3.34)

Furthermore, the nominal radius R (i.e. the radius that would track the center of

the waveguide if a = b) is

R = r − w1

2
. (3.35)

The second example, Fig. 3.5.b, shows an adiabatic ring resonator in the

racetrack configuration. As with the conventional ring resonator, the present struc-

ture is just a non-racetrack resonator, split in half, with both ends sandwiching

a parallel straight waveguide section of length Ls. The geometric parameters in
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Figure 3.5: a) Design of an adiabatic ring resonator. The outer wall takes the
shape of a circle with radius r. The inner wall is an ellipse with semi-major axis a
and semi-minor axis b. The waveguide that composes the ring transitions from a
width of w1 at the narrowest points to w2 at the widest points. The tethers, interior
to the ring, provide for low-optical-loss electrical contact to a higher level metal
layer. b) An adiabatic ring resonator in the “racetrack” configuration. As with
convention ring resonators, a non-racetrack adiabatic resonator is split in half and
a straight-waveguide section, of length Ls, is sandwiched between. The straight
waveguides retain constant widths w1. The other geometric parameters remain as
before.

this structure carry over from before. Additionally, the straight section contains

waveguides of constant width w1; i.e. the adiabatic transition does not occur until

one is outside of the straight section.

We now want to calculate the FSR of an adiabatic ring resonator; the FSR

being dependent on ng as per (3.32). As discussed above, ng is related to β,

which is the eigenvalue associated with the transverse modes; i.e. the value of ng is

dependent on the waveguide cross-section normal to the direction of propagation.

This poses a dilemma because the waveguide cross-section changes as the width

changes. To rectify this situation, we first rewrite the phase relation (3.31) as

φ =

∫ L

0

βdl, (3.36)

where the integration is performed over the length of the ring. Invoking the geom-

etry of Fig. 3.5.b,

φ = 2β (w1)Ls +R

∫ 2π

0

βdθ, (3.37)
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where β is written as a function of waveguide width, which can be parameterized

with respect to the angle θ subtended when propagating around the ring. In the

foregoing, setting Ls = 0 yields the equation appropriate for Fig. 3.5.a. In analogy

with (3.31), we may also write

φ = βeffL, (3.38)

where βeff is an effective, or path-integrated, propagation constant that yields

the correct phase result for light propagating through the ring. Combining the

foregoing with (3.37) yields

βeff = 2β (w1)
Ls
L

+
R

L

∫ 2π

0

βdθ. (3.39)

Finally, invoking the relation

ng =
c
dω
dβ

(3.40)

yields an effective, or path-integrated, group index

neff
g = 2

Ls
L
ng (w1) +

R

L

∫ 2π

0

ngdθ, (3.41)

where it is now ng that is written as a function of waveguide width or parameterized

with respect to angle subtended. This equation solves the problem we are interested

in; neff
g can be substituted into (3.32) to determine the FSR of an adiabatic ring

resonator. We note that, specifying f to be the fraction of the total length of the

ring resonator that is a straight waveguide, we can rewrite the foregoing as

neff
g = fng (w1) + (1− f)

1

2π

∫ 2π

0

ngdθ. (3.42)

This has the useful interpretation that neff
g is simply the weighted sum of ng around

the length of the resonator.

Calculating neff
g via (3.42) is a straight-forward extension of performing

waveguide-mode solving. For example; considering a silicon strip waveguide, 230-

nm thick, surrounded by SiO2, and a wavelength of 1550 nm; a mode solver yields

solutions for the phase and group indices when varying the width of the waveguide,

as plotted in Fig. 3.6. More accurately, the phase index is the normalized eigenvalue

solution, while the group index is easily calculated from the former via (3.33).
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Figure 3.6: Modal refractive indices for an oxide-clad, 230-nm-thick, silicon strip
waveguide, of varying width, at a wavelength of 1550 nm.

Having, what computationally amounts to, a lookup table for neff
g allows for (3.42)

to be solved numerically.

We now show two experimentally confirmed examples of using the foregoing

methods. For the first example, we take the ring of Fig. 3.5.a, iterated four times,

and arranged in the configuration as shown in Fig. 3.7.a–b. For this example,

w1 = 325 nm, w2 = 650 nm, R = 2.25 µm, and the waveguides are 230-nm

thick so that we may use the previous result of group index vs. width. Invoking

(3.42) yields neff
g = 4.22 and an FSR of 5.03 THz, which is consistent with the

experimental measurement of Fig. 3.7.c.

As a second example, we use the ring of Fig. 3.5.b, arranged as a second-

order lattice filter, as shown in Fig. 3.8.a. For this example, w1 = 400 nm, w2 =

800 nm, R = 12.3 µm, Ls = 4.018 µm, and the waveguides are again 230-nm thick.

Invoking (3.42) yields neff
g = 4.14 and an FSR of 849 GHz, which is consistent with

the experimental measurement of Fig. 3.8.b.
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Figure 3.7: a) Diagram of a filtering scheme using the type of ring resonator
diagrammed in Fig. 3.5.a. b) Dark-field micrograph of a fabricated device using
the foregoing design. c) The corresponding measured transmission spectrum.
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Figure 3.8: a) Bright-field micrograph of a fabricated device that uses the
type of ring resonator diagrammed in Fig. 3.5.b. b) The corresponding measured
transmission spectrum.



Chapter 4

An Investigation of Dispersion in

Directional Couplers and a

Wideband Parameter Extraction

of Ring Resonators

4.1 Overview

Silicon ring resonators are key building blocks for modulators, filters, and

resonantly-enhanced detectors. A wideband parametric characterization of these

resonators is important for expanding their spectral ranges and total usable band-

widths for use in on-chip interconnects. Extending reported measurements that

focus on fitting a transmission spectrum with Lorentzian functions throughout

only one or two free spectral ranges (FSR) [46, 80, 81, 82, 83], we perform a

wideband characterization that spans 15 FSRs and demonstrate that coupling-

coefficient dispersions considerably exceed modal refractive-index dispersions in

silicon directional couplers.

The device analyzed here is a single-waveguide-coupled silicon ring res-

onator, as shown in Fig. 4.1.a. Aside from being useful in its own right, such a

device can be utilized as a common test structure in silicon-photonic integrated

40
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circuits. Such test structures can exhibit relatively small footprints and the lack of

multiple couplers eliminates the possibility of the confounding of multiple coupling

coefficients [84]. Ridge waveguides were fabricated on a silicon-on-insulator wafer

(250-nm silicon thickness) using electron-beam lithography and reactive ion etching

(160-nm etch depth). Using a scanning electron microscope (SEM), the measured

perimeter of the ring/racetrack was 186 µm with a 10-µm bending radius along

the curves; waveguide widths were 530 nm (bus) and 550 nm (ring). An effective

coupler length of 65 µm was inferred by matching finite-element-method (FEM)

simulations of the measured geometry to the coupling-coefficient data obtained

below. Light was coupled to the chip via polarization-maintaining tapered lensed

fibers and polymer spot-size converters overlaid on tapered silicon waveguides. The

transmission spectrum (Fig. 4.1.b) was measured using a swept-wavelength laser

and photoreceiver.

4.2 Ring-resonator parameter extraction

Here, an algorithm is developed that is able to extract the coupling and

through coefficients and loss of a ring resonator, that is coupled to a single waveg-

uide, over arbitrarily many FSRs. Previous work on the single-bus structure fol-

lowed a different track of focusing on the loss of the ring [85, 86]. Another study

proposed a method for extracting the coupling coefficients of the single-bus res-

onator [80]; however, the model used did not focus on spanning and reconstructing

several FSRs [46]. Other methods for extracting the ring parameters require that

the resonator be coupled to two waveguides [80, 84, 87].

In developing the computational algorithm, we modified the previously pub-

lished result [47], for the intensity transmission of a ring resonator coupled to a

single waveguide, to include the effects of the intensity loss that is incurred in the

coupling region. The intensity transmission is

|H(λ)|2 =

∣∣∣∣ t− εaeiβL1− at∗e−iβL
∣∣∣∣2 , (4.1)

where β = 2πneff

λ
, λ is the wavelength, neff is the effective mode index, L and a
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Large Dispersion of Silicon Directional Couplers
Obtained via Wideband Microring

Parametric Characterization
Ryan Aguinaldo, Student Member, IEEE, Yiran Shen, and Shayan Mookherjea, Senior Member, IEEE

Abstract— Using the measured transmission spectrum of a
waveguide-coupled silicon microring, we develop an algorithm for
determining the wavelength dependencies (i.e., the dispersions) of
the coupling coefficients and loss of the ring. Our analysis recon-
structs the measured spectrum without use of Lorentzian fitting,
covers 15 free spectral ranges (FSR), and was performed from
∼1520 to 1570 nm, covering all of and extending past the C-band.
We demonstrate that the dispersion of the coupling coefficient
of a silicon-waveguide directional coupler considerably exceeds
(by a factor of ∼10) the modal refractive-index dispersions of its
constituent waveguides.

Index Terms— Directional couplers, dispersion engineering,
ring resonators, silicon photonics.

I. INTRODUCTION

S ILICON microring resonators are key building blocks
for modulators, filters, and resonantly-enhanced detectors.

A wideband parametric characterization of these resonators
is important for expanding their spectral ranges and total
usable bandwidths for use in on-chip interconnects. Extending
reported measurements that focus on fitting a transmission
spectrum with Lorentzian functions throughout only one or
two FSRs [1]–[5], we perform a wideband characterization
that spans 15 FSRs and demonstrate that coupling-coefficient
dispersions considerably exceed modal refractive-index disper-
sions in silicon directional couplers.

We analyzed a waveguide-coupled silicon ring resonator,
as shown in Fig. 1(a). Aside from being useful in its own
right, we envision that such a device can be utilized as a
common test structure in silicon-photonic integrated circuits.
Such test structures can exhibit relatively small footprints and
the lack of multiple couplers eliminates the possibility of
the confounding of multiple coupling coefficients [6]. Ridge
waveguides were fabricated on a silicon-on-insulator wafer
(250-nm silicon thickness) using electron-beam lithography
and reactive ion etching (160-nm etch depth). Using a scanning
electron microscope (SEM), the measured perimeter of the
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Fig. 1. a) SEM micrograph of the ring resonator. b) Measured spectrum and
its reconstruction via iterations on t and α. c)–e) Lineshapes corresponding to
the labels in (b). f) Measurement and its reconstruction; iterations on ϵ added.

ring/racetrack was 186 µm with a 10-µm bending radius
along the curves; waveguide widths were 530 nm (bus) and
550 nm (ring). An effective coupler length of 65 µm was
inferred by matching finite-element-method (FEM) simula-
tions of the measured geometry to the coupling-coefficient
data obtained below. Light was coupled to the chip via
polarization-maintaining tapered lensed fibers and polymer
spot-size converters overlaid on tapered silicon waveguides.
The transmission spectrum [Fig. 1(b)] was measured using a
swept-wavelength laser and photoreceiver.

II. FITTING METHOD

We developed an algorithm that is able to extract the
coupling and through coefficients and loss of a ring resonator,
that is coupled to a single waveguide, over arbitrarily many
FSRs. Previous work on the single-bus structure followed a
different track of focusing on the loss of the ring [7], [8].
Another study proposed a method for extracting the coupling
coefficients of the single-bus resonator [2]; however, the model
used did not focus on spanning and reconstructing several
FSRs [1]. Other methods for extracting the ring parameters

1041–1135/$31.00 © 2012 IEEE

Figure 4.1: a) SEM micrograph of the ring resonator. b) Measured spectrum
and its reconstruction via iterations on t and a. c–e) Lineshapes corresponding
to the labels in (b). f) Measurement and its reconstruction with iterations on ε
added.

are the perimeter and round-trip loss factor of the ring, κ and t are the length-

integrated cross- and through-coupling coefficients of the field amplitude and ε =

|t|2 + |κ|2 characterizes the coupling intensity loss. Note that, except for L, the

foregoing parameters are wavelength dependent. To determine the wavelength vari-

ations of a, t, and κ, we fit (4.1) to the experimentally measured data of Fig. 4.1.b,

FSR-by-FSR, in a piecewise-continuous manner. Use of (4.1) is more accurate

than Lorentzian fitting because the latter is valid only close to resonance [46].

Using (4.1), the values of a and t are iteratively computed at each resonant

wavelength while inserting the measured values of |H|2 into the left-hand side. At

the resonances, the exponentials in (4.1) equal unity. Initial test values of a then

determine the first-iteration values of t at the resonances. Interpolations of a and
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t over the entire spectral domain then allow for the calculation of a transmission

spectrum, i.e. a reconstructed |H|2, using (4.1).

At this stage, the reconstructed |H|2 exhibits identical resonant locations

and depths as the measured |H|2; however, the linewidths of the measured vs.

calculated resonances will not match. The test values of a are then altered iter-

atively until the linewidths match. This completes one full sweep of t- followed

by a-iterations. Following the sweep, the reconstructed depths are altered due to

the iterations on a; thus, several more full sweeps are performed until convergence,

yielding a reconstructed |H|2 that matches the measured spectrum. Figures 4.1.b–

e show the good agreement in matching the locations, depths, and widths of the

resonances at distant wavelengths throughout the C-band. Three full sweeps over

the entire spectrum were performed, with an average number of iterations at each

resonance of 24, 19, and 14 for the first through third sweeps. The convergence

condition was that both t and a converged to a relative error of less than 10−6.

A linear expansion of the mode index is assumed:

neff = n0 + (λ− λ0)
dneff

dλ
, (4.2)

where the derivative was approximately constant over the spectral domain of in-

terest. The group index,

ng = neff − λ
dneff

dλ
= 3.99, (4.3)

was determined by calculating the FSR of the measured |H|2; dneff

dλ
= −0.897 µm−1

was computed via FEM simulations of the waveguide geometry.

A better fit in the off-resonant areas of the reconstructed |H|2 to the

measured |H|2 can be obtained by including FSR-by-FSR iterations on ε, as in

Fig. 4.1.f. This additional routine, however, leads to several unphysical values of

a > 1. Such behavior occurs because the shapes/depths of the resonances are

dependent on the product εa (e.g. critical coupling occurs when t = εa), whereas

the baseline is primarily dependent on ε only. Once the baseline clamps the value

of ε, the algorithm is forced to choose the unique, and possibly unphysical, value of

a that conserves the loss product εa. Therefore, the baseline of the measured |H|2

that fluctuates between 0 and -2 dB, which has been observed by others [81, 82],
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require that the resonator be coupled to two waveguides [2],
[6], [9].

In developing the computational algorithm, we modified the
previously published result [10], for the intensity transmission
of a ring resonator coupled to a single waveguide, to include
the effects of the intensity loss that is incurred in the coupling
region. The intensity transmission is

|H (λ)|2 =
∣∣∣ t − ϵαeiβL

1 − αt∗e−iβL

∣∣∣
2

(1)

where β = 2πneff /λ, λ is the wavelength, neff is the effective
mode index, L and α are the perimeter and round-trip loss
factor of the ring, κ and t are the length-integrated cross-
and through-coupling coefficients of the field amplitude, and
ε = |t|2 + |κ |2 characterizes the coupler intensity loss. Note
that, except for L, the foregoing parameters are wavelength
dependent. To determine the wavelength variations of α, t , and
κ , we fit (1) to the experimentally measured data of Fig. 1(b),
FSR-by-FSR, in a piecewise-continuous manner. Use of (1)
is more accurate than Lorentzian fitting because the latter is
valid only close to resonance [1].

Using (1), the values of α and t are iteratively computed
at each resonant wavelength while inserting the measured
values of |H |2 into the left-hand side. At the resonances,
the exponentials in (1) equal unity. Initial test values of α
then determine the first-iteration values of t at the resonances.
Interpolations of α and t over the entire spectral domain then
allow for the calculation of a transmission spectrum, i.e., a
reconstructed |H |2, using (1).

At this stage, the reconstructed |H |2 exhibits identical
resonant locations and depths as the measured |H |2; however,
the linewidths of the measured vs. calculated resonances will
not match. The test values of α are then altered iteratively until
the linewidths match. This completes one full sweep of t- fol-
lowed by α-iterations. Following the sweep, the reconstructed
depths are altered due to the iterations on α; thus, several
more full sweeps are performed until convergence, yielding
a reconstructed |H |2 that matches the measured spectrum.
Figure 1(b)–(e) show the good agreement in matching the
locations, depths, and widths of the resonances at distant
wavelengths throughout the C-band. Three full sweeps over
the entire spectrum were performed, with an average number
of iterations at each resonance of 24, 19, and 14 for the first
through third sweeps. The convergence condition was that both
t and α converged to a relative error of less than 10−6.

We assumed a linear expansion of the mode index, neff =
n0 + (λ − λ0)

dneff
dλ , where the derivative was approximately

constant over the spectral domain of interest. The group index,
ng = neff − λ dneff

dλ = 3.99, was determined by calculating
the FSR of the measured |H |2; dneff

dλ = −0.897µm−1 was
computed via FEM simulations of the waveguide geometry.

A better fit in the off-resonant areas of the reconstructed
|H |2 to the measured |H |2 can be obtained by including
FSR-by-FSR iterations on ε, as in Fig. 1(f). This additional
routine, however, leads to several unphysical values of α > 1.
Such behavior occurs because the shapes/depths of the reso-
nances are dependent on the product εα (e.g., critical coupling
occurs when t = εα), whereas the baseline is primarily
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Fig. 2. Extracted dispersions of the ring-resonator parameters. Mathemat-
ically, two sets of solutions are possible, both of which yield the same
transmission spectrum. (a) The solution corresponding to the fabricated
devices. (b) An alternate solution corresponding to a different device geometry.

dependent on ε only. Once the baseline clamps the value of ε,
the algorithm is forced to choose the unique, and possibly
unphysical, value of α that conserves the loss product εα.
Therefore, the baseline of the measured |H |2 that fluctuates
between 0 and −2 dB, which has been observed by others
[3], [4], does not occur solely due to the loss that is suffered
in the directional coupler, but also due to loss mechanisms
that are external to the coupler, e.g., fiber/multimode coupling,
waveguide disorder, etc.

III. EXTRACTED PARAMETERS

The extracted parameters are shown in Fig. 2. The para-
meters α and t were determined from the iteration algorithm
and |κ |2 = ε − |t|2. The shaded bands indicate parameter
solutions corresponding to different assumed values of ε. The
band edges correspond to ε = 1.0 (arrow tails) and ε = 0.92
(arrow heads); which represents the ideal lossless case and the
typical loss incurred in a fused coupler [9], respectively. The
parameters shift monotonically in the direction of the arrows
as ε decreases from 1.0 to 0.92.

Owing to the fact that (1) exhibits two zeros, there are
actually two convergent solutions to the algorithm [2], [7], [8].
The two solutions correspond to the case where the deepest
resonance is either slightly under-coupled or slightly over-
coupled; the solutions cannot be distinguished from a phase-
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require that the resonator be coupled to two waveguides [2],
[6], [9].

In developing the computational algorithm, we modified the
previously published result [10], for the intensity transmission
of a ring resonator coupled to a single waveguide, to include
the effects of the intensity loss that is incurred in the coupling
region. The intensity transmission is

|H (λ)|2 =
∣∣∣ t − ϵαeiβL

1 − αt∗e−iβL

∣∣∣
2

(1)

where β = 2πneff /λ, λ is the wavelength, neff is the effective
mode index, L and α are the perimeter and round-trip loss
factor of the ring, κ and t are the length-integrated cross-
and through-coupling coefficients of the field amplitude, and
ε = |t|2 + |κ |2 characterizes the coupler intensity loss. Note
that, except for L, the foregoing parameters are wavelength
dependent. To determine the wavelength variations of α, t , and
κ , we fit (1) to the experimentally measured data of Fig. 1(b),
FSR-by-FSR, in a piecewise-continuous manner. Use of (1)
is more accurate than Lorentzian fitting because the latter is
valid only close to resonance [1].

Using (1), the values of α and t are iteratively computed
at each resonant wavelength while inserting the measured
values of |H |2 into the left-hand side. At the resonances,
the exponentials in (1) equal unity. Initial test values of α
then determine the first-iteration values of t at the resonances.
Interpolations of α and t over the entire spectral domain then
allow for the calculation of a transmission spectrum, i.e., a
reconstructed |H |2, using (1).

At this stage, the reconstructed |H |2 exhibits identical
resonant locations and depths as the measured |H |2; however,
the linewidths of the measured vs. calculated resonances will
not match. The test values of α are then altered iteratively until
the linewidths match. This completes one full sweep of t- fol-
lowed by α-iterations. Following the sweep, the reconstructed
depths are altered due to the iterations on α; thus, several
more full sweeps are performed until convergence, yielding
a reconstructed |H |2 that matches the measured spectrum.
Figure 1(b)–(e) show the good agreement in matching the
locations, depths, and widths of the resonances at distant
wavelengths throughout the C-band. Three full sweeps over
the entire spectrum were performed, with an average number
of iterations at each resonance of 24, 19, and 14 for the first
through third sweeps. The convergence condition was that both
t and α converged to a relative error of less than 10−6.

We assumed a linear expansion of the mode index, neff =
n0 + (λ − λ0)

dneff
dλ , where the derivative was approximately

constant over the spectral domain of interest. The group index,
ng = neff − λ dneff

dλ = 3.99, was determined by calculating
the FSR of the measured |H |2; dneff

dλ = −0.897µm−1 was
computed via FEM simulations of the waveguide geometry.

A better fit in the off-resonant areas of the reconstructed
|H |2 to the measured |H |2 can be obtained by including
FSR-by-FSR iterations on ε, as in Fig. 1(f). This additional
routine, however, leads to several unphysical values of α > 1.
Such behavior occurs because the shapes/depths of the reso-
nances are dependent on the product εα (e.g., critical coupling
occurs when t = εα), whereas the baseline is primarily

1.0

0.8

0.6

0.4

0.2

0

|t|2

| |2

| |2

| |2

(a)

1520   1530     1540     1550     1560     1570 

1.0

0.8

0.6

0.4

0.2

0

Wavelength (nm) 

|t|2

| |2

| |2

| |2

(b)

1520   1530     1540     1550     1560     1570 

Fig. 2. Extracted dispersions of the ring-resonator parameters. Mathemat-
ically, two sets of solutions are possible, both of which yield the same
transmission spectrum. (a) The solution corresponding to the fabricated
devices. (b) An alternate solution corresponding to a different device geometry.

dependent on ε only. Once the baseline clamps the value of ε,
the algorithm is forced to choose the unique, and possibly
unphysical, value of α that conserves the loss product εα.
Therefore, the baseline of the measured |H |2 that fluctuates
between 0 and −2 dB, which has been observed by others
[3], [4], does not occur solely due to the loss that is suffered
in the directional coupler, but also due to loss mechanisms
that are external to the coupler, e.g., fiber/multimode coupling,
waveguide disorder, etc.

III. EXTRACTED PARAMETERS

The extracted parameters are shown in Fig. 2. The para-
meters α and t were determined from the iteration algorithm
and |κ |2 = ε − |t|2. The shaded bands indicate parameter
solutions corresponding to different assumed values of ε. The
band edges correspond to ε = 1.0 (arrow tails) and ε = 0.92
(arrow heads); which represents the ideal lossless case and the
typical loss incurred in a fused coupler [9], respectively. The
parameters shift monotonically in the direction of the arrows
as ε decreases from 1.0 to 0.92.

Owing to the fact that (1) exhibits two zeros, there are
actually two convergent solutions to the algorithm [2], [7], [8].
The two solutions correspond to the case where the deepest
resonance is either slightly under-coupled or slightly over-
coupled; the solutions cannot be distinguished from a phase-
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require that the resonator be coupled to two waveguides [2],
[6], [9].

In developing the computational algorithm, we modified the
previously published result [10], for the intensity transmission
of a ring resonator coupled to a single waveguide, to include
the effects of the intensity loss that is incurred in the coupling
region. The intensity transmission is

|H (λ)|2 =
∣∣∣ t − ϵαeiβL

1 − αt∗e−iβL

∣∣∣
2

(1)

where β = 2πneff /λ, λ is the wavelength, neff is the effective
mode index, L and α are the perimeter and round-trip loss
factor of the ring, κ and t are the length-integrated cross-
and through-coupling coefficients of the field amplitude, and
ε = |t|2 + |κ |2 characterizes the coupler intensity loss. Note
that, except for L, the foregoing parameters are wavelength
dependent. To determine the wavelength variations of α, t , and
κ , we fit (1) to the experimentally measured data of Fig. 1(b),
FSR-by-FSR, in a piecewise-continuous manner. Use of (1)
is more accurate than Lorentzian fitting because the latter is
valid only close to resonance [1].

Using (1), the values of α and t are iteratively computed
at each resonant wavelength while inserting the measured
values of |H |2 into the left-hand side. At the resonances,
the exponentials in (1) equal unity. Initial test values of α
then determine the first-iteration values of t at the resonances.
Interpolations of α and t over the entire spectral domain then
allow for the calculation of a transmission spectrum, i.e., a
reconstructed |H |2, using (1).

At this stage, the reconstructed |H |2 exhibits identical
resonant locations and depths as the measured |H |2; however,
the linewidths of the measured vs. calculated resonances will
not match. The test values of α are then altered iteratively until
the linewidths match. This completes one full sweep of t- fol-
lowed by α-iterations. Following the sweep, the reconstructed
depths are altered due to the iterations on α; thus, several
more full sweeps are performed until convergence, yielding
a reconstructed |H |2 that matches the measured spectrum.
Figure 1(b)–(e) show the good agreement in matching the
locations, depths, and widths of the resonances at distant
wavelengths throughout the C-band. Three full sweeps over
the entire spectrum were performed, with an average number
of iterations at each resonance of 24, 19, and 14 for the first
through third sweeps. The convergence condition was that both
t and α converged to a relative error of less than 10−6.

We assumed a linear expansion of the mode index, neff =
n0 + (λ − λ0)

dneff
dλ , where the derivative was approximately

constant over the spectral domain of interest. The group index,
ng = neff − λ dneff

dλ = 3.99, was determined by calculating
the FSR of the measured |H |2; dneff

dλ = −0.897µm−1 was
computed via FEM simulations of the waveguide geometry.

A better fit in the off-resonant areas of the reconstructed
|H |2 to the measured |H |2 can be obtained by including
FSR-by-FSR iterations on ε, as in Fig. 1(f). This additional
routine, however, leads to several unphysical values of α > 1.
Such behavior occurs because the shapes/depths of the reso-
nances are dependent on the product εα (e.g., critical coupling
occurs when t = εα), whereas the baseline is primarily
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Fig. 2. Extracted dispersions of the ring-resonator parameters. Mathemat-
ically, two sets of solutions are possible, both of which yield the same
transmission spectrum. (a) The solution corresponding to the fabricated
devices. (b) An alternate solution corresponding to a different device geometry.

dependent on ε only. Once the baseline clamps the value of ε,
the algorithm is forced to choose the unique, and possibly
unphysical, value of α that conserves the loss product εα.
Therefore, the baseline of the measured |H |2 that fluctuates
between 0 and −2 dB, which has been observed by others
[3], [4], does not occur solely due to the loss that is suffered
in the directional coupler, but also due to loss mechanisms
that are external to the coupler, e.g., fiber/multimode coupling,
waveguide disorder, etc.

III. EXTRACTED PARAMETERS

The extracted parameters are shown in Fig. 2. The para-
meters α and t were determined from the iteration algorithm
and |κ |2 = ε − |t|2. The shaded bands indicate parameter
solutions corresponding to different assumed values of ε. The
band edges correspond to ε = 1.0 (arrow tails) and ε = 0.92
(arrow heads); which represents the ideal lossless case and the
typical loss incurred in a fused coupler [9], respectively. The
parameters shift monotonically in the direction of the arrows
as ε decreases from 1.0 to 0.92.

Owing to the fact that (1) exhibits two zeros, there are
actually two convergent solutions to the algorithm [2], [7], [8].
The two solutions correspond to the case where the deepest
resonance is either slightly under-coupled or slightly over-
coupled; the solutions cannot be distinguished from a phase-

Figure 4.2: Extracted dispersions of the ring-resonator parameters. Mathemat-
ically, two sets of solutions are possible, both of which yield the same transmission
spectrum. a) The solution corresponding to the fabricated devices. b) An alter-
nate solution, which physically would correspond to a different device geometry.

does not occur solely due to the loss that is suffered in the directional coupler, but

also due to loss mechanisms that are external to the coupler, e.g. fiber/multimode

coupling, waveguide disorder, etc.

4.3 Dispersions of the ring-resonator parameters

Using the method described above, the extracted parameters are shown in

Fig. 4.2. The parameters a and t were determined from the iteration algorithm

and |κ|2 = ε− |t|2. The shaded bands indicate parameter solutions corresponding

to different assumed values of ε. The band edges correspond to ε = 1.0 (arrow

tails) and ε = 0.92 (arrow heads), which represents the ideal lossless case and the

typical loss incurred in a fused coupler [87], respectively. The parameters shift

monotonically in the direction of the arrows as ε decreases from 1.0 to 0.92.

Owing to the fact that (4.1) exhibits two zeros, there are actually two con-

vergent solutions to the algorithm [80, 85, 86]. The two solutions correspond to

the case where the deepest resonance is either slightly under-coupled or slightly

over-coupled; the solutions cannot be distinguished from a phase insensitive mea-

surement of |H|2 but may be inferred by the expected parameter trends based

on the design. Note that a certain symmetry is exhibited by (4.1), and seen in
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Fig. 4.2, in that the |t|2 band in one solution set becomes the |εa|2 band in the

other solution set, and vice-versa. We determine that the results in Fig. 4.2.a are

the correct parameter dispersions for the device in Fig. 4.1.a based on our design

goal and FEM simulations.

From Fig. 4.2.a, we calculate a coupling-coefficient dispersion d|κ|2/dλ ≈
8 µm−1; this is much larger in magnitude than the index dispersion dneff/dλ =

0.897 µm−1. To explain why the coupling dispersion is much larger than the index

dispersion, we can invoke a coupled-mode formalism to show that

d|κ|2
dλ
≈ −4πIs1Ia1Is2Ia2

Lc
λ2

(nga − ngs) sin

(
2πLc
λ

(ns − na)
)
, (4.4)

where Lc is the length of the coupler, ni and ngi are the phase and group refractive

indices, and

Iij =

∫
E∗i · Ejd2r (4.5)

are overlap integrals over the waveguide modes Ei with the normalization that

Iii = 1; s, a, 1, and 2 indicate the symmetric and anti-symmetric supermodes and

the isolated modes of the two waveguides that constitute the coupler, respectively.

In a symmetric coupler, the product of the four I’s equals −1
4
; this product tends

towards zero for asymmetries in the coupler geometry and, for our device, is −0.64,

based on FEM simulations of the coupler and dimensional measurements using

SEM. This analysis shows that large coupling dispersion is caused by the large

prefactor πLc/λ
2 ∼ 85 µm−1, in addition to phase or group velocity mismatch

between the supermodes.

The magnitude of (4.4) can be decreased by designing the two waveguides,

which constitute the coupler, to have different cross-sectional geometries. Such a

scheme decreases the magnitude of
∏

i,j Iij; however, increased asymmetry of the

waveguide geometries increases the ns − na difference.

Coupling dispersion may also be decreased by causing the values of ns and

na to approach each other. This is possible for a symmetric coupler by increasing

the waveguide separation because the supermodes degenerate to isolated waveguide

modes as the separation tends to infinity. Such a scheme, however, is impractical

because the perturbation of one waveguide on the other is then exponentially
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weaker; longer coupling lengths would be needed for a desired |κ|2. Furthermore,

as ns → na, (4.4) becomes proportional to a larger prefactor of (πLc)
2/λ3. An

alternative approach to reducing the magnitude of (4.4) may be in causing ngs and

nga to approach each other; i.e. one can match either the phase velocities or group

velocities of the supermodes.

4.4 Summary

A wideband parameterization algorithm for silicon microring resonators has

been presented. The resultant parameter extraction has shown that the coupling

dispersions of silicon directional couplers considerably exceed the modal refractive-

index dispersions in magnitude. The analysis extends over 15 FSRs and covers the

entire C-band. The results have also yielded valuable insight into coupling disper-

sion and may pave the way for future designs of wideband, dispersion-compensated,

silicon photonic circuits.

Chapter 4, in part, contains material, published in the following, of which

the dissertation author was the primary investigator:

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large Dispersion of Silicon Directional

Couplers Obtained via Wideband Microring Parametric Characterization,” IEEE

Photon. Technol. Lett., vol. 24, pp. 1242–1244, July 2012 [88].



Chapter 5

Channelized Spectrum

Monitoring

5.1 Overview

In this chapter, we describe a device that can be described as a channel-

ized spectrum monitor (CSM). The purpose of this device is to replace the optical

spectrum analyzer (OSA) that may be found in an optical data center network

or similar. While by no means an on-chip OSA, the CSM represents a functional

equivalent to the OSA when used in a network that operates with known wave-

length channels that originate from known sources. In this case, the only new

information that the OSA can provide is how much power is carried in each chan-

nel. The CSM that we describe here provides this very same information, but

with many orders-of-magnitude reduction in size, weight, and power. While rack-

friendly optical performance monitors and channel monitors do exist commercially

[89], these conventional off-the-shelf (COTS) components tend to operate on 100-

µs time scales and still represent bulk optical components. The silicon-photonic

solution that we describe here has the potential to be several orders-of-magnitude

faster than the COTS solutions via the monolithic integration of high-speed Ge

photodetectors. Additionally, a silicon-photonic solution allows for the monolithic

integrability with other on-chip subsystems.

47
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As motivation for the CSM, we turn to the MORDIA network at the Uni-

versity of California, San Diego. MORDIA (Microsecond Optical Reconfigurable

Datacenter Interconnect Architecture) is an optical circuit-switched, dense wave-

length division multiplexed (DWDM), ring network [90]. It supports up to 24

hosts, representing 24 wavelength channels located throughout the C-band on the

100-GHz-spaced ITU-T telecommunications grid, from channels 15 (1565.50 nm)

to 58 (1531.12 nm). Each channel carries 10-Gbps data streams. The network is

set up in a ring topology with six nodes and four hosts per node; however, 23 of

the 24 hosts are utilized in the current implementation.

The MORDIA hardware is shown in Fig. 5.1.a. The eyesore in this picture

is the OSA, which takes up more than its fair share of rack-space. Two sepa-

rate outputs, taken for different network configurations, of the OSA are plotted in

Fig. 5.1.b. Each line in the spectrum represents an ITU-T channel; adjacent chan-

nels are spaced by 100 GHz. Once the network is built and deemed “operational,”

the locations of the spectral lines do not change; however, their powers may drift

due to network impairments, component failures, etc. Additionally, the noise floor,

which is due to amplified spontaneous emission (ASE), is characterized as part of

the initial setup and is not of concern to a network monitor who is only worried

about the power contained in each channel. As such, instead of displaying the

full spectra of Fig. 5.1.b, one could instead show only the pertinent information,

as plotted in Fig. 5.1.c, which is simply a graph of powers contained in a discrete

number of ITU-T channels.

In other words, the full power of the OSA is not necessary. Once the net-

work is built, and through initial characterization, one knows the source lineshapes

(i.e. lineshapes of the laser transceivers) as well as their spectral locations. One

only needs to know how much power is contained in each channel at some arbitrary

point in the network; i.e. Fig. 5.1.c instead of Fig. 5.1.b. The CSM is designed for

this functionality.
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Figure 5.1: a) Hardware for the MORDIA network. In particular, we note
that there is a large OSA, which takes up more than its fair share of rack space,
to monitor the power in the various channels. b) Two spectra, of the MORDIA
network, corresponding to two different network conditions. From a network-
monitoring point-of-view, we are interested in the power variations of each line
(i.e. channel), but not necessarily in the specifics of the lineshapes, ASE noise,
etc. c) The same information in (b), but in the network-monitoring point-of-
view (orange trace → top panel; grey trace → bottom panel). In going from (b)
→ (c), the ordinate remains the same but the abscissa has been discretized into
corresponding ITU-T channel numbers.

5.2 The simplest, yet impractical, method to

monitor a channelized spectrum

Here, we describe the conceptually easiest method for designing a CSM;

however, as we will see, this method is impractical given the constraint of realistic

fabrication processes [91, 7, 92, 93, 16]. Again, the goal of a CSM is to detect the

powers in a priori known channels, i.e. over a discrete set of (center) wavelengths.

In principle, the structure diagrammed in Fig. 5.2 should be able to perform the

described function. In this structure, a bank of N ring resonators, which are

isolated from each other, are coupled to a common bus waveguide. Each resonator

is tuned to a different wavelength λi, with each wavelength representing a different

DWDM channel. Each resonator also drops resonant light to a photodetector; one

photodetector per resonator. Therefore, by dropping the N separate channels to

N separate detectors, one is able to directly monitor the power levels in each of
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Figure 5.2: A conceptually simple implementation of a CSM. Each resonator
drops a unique wavelength channel.

the N channels.

The foregoing prescription is impractical for two reasons. First, there is an

implicit necessity for ultra-high-Q resonators. For the CSM to operate as described,

there must be no cross talk between adjacent resonators or even between any

two resonators. Given that our present application is geared towards a 100-GHz

channel spacing, an extremely stringent requirement is therefore placed on the

spectral properties (bandwidths, roll-offs, etc.) of the resonators. Second, it is

generally impossible to predict the spectral locations of resonances pre-fabrication

[91, 16]. Therefore, it is difficult to meet the requirement that each of the resonators

correspond to a specific and unique λi. Even if the resonators are made to be

tunable, the allowable distance in wavelength between the two furthest channels

may then be limited by the tuning range.

We note, and show for completeness, that even though it is difficult to

predict the resonant frequency of a to-be-fabricated ring of length L, one is usually

able to predict the free spectral range (FSR)

∆ν =
c

ngL
, (5.1)

where ng is the group index of the waveguide mode and c is the velocity of light.

The reason for unintended shifts, in either the mth resonance νm or the FSR ∆ν, is

due to deviations in the refractive (phase) index n of the waveguide mode, which

can occur due to various process variations, sidewall roughness, waveguide disorder,

or even non-uniformity in the buried oxide layer [91]. Differentiating (5.1) yields

d∆ν

dn
= − c

n2
gL
· dng
dn

. (5.2)
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Meanwhile, the mth resonance

νm =
mc

nL
(5.3)

has the derivative
dνm
dn

= − mc

n2L
. (5.4)

In a common silicon waveguide, the second factor in (5.2) is of magnitude-order

unity and ng is not much greater than 2n, if even that large1. Then, comparing

(5.2) to (5.4), we may write ∣∣∣∣dνmdn
∣∣∣∣ ∼ m

∣∣∣∣d∆ν

dn

∣∣∣∣ . (5.5)

From (5.3), we see that

m =
nL

λ
, (5.6)

which could easily be on the order of 100, if not 1000. Therefore, (5.5) indicates

that errors in nominal resonant frequencies are ∼100–1000 times stronger than

errors in nominal FSRs. This confirms our assertion that, within an acceptable

range of error, FSRs are well-predictable whereas specific resonant locations are

not.

5.3 Device architecture

Before we describe the actual implementation of the CSM, we briefly de-

scribe the architecture of the experimentally measured device. A dark-field mi-

crograph of the CSM is shown in Fig. 5.3.a. At first glance, it is not unlike the

diagrammed example of the foregoing section. The CSM is a 24-element filter

bank containing a total of 168 ring resonators. Each element of the filter bank is a

seventh-order ring-lattice filter (i.e. seven rings per filter). A single filter-element

is shown in the bright-field micrograph of Fig. 5.3.b. The rings exhibit a nominal

bend radius of 1.69 µm and are of constant size within each filter, but vary in

length from filter-to-filter. The ring lengths are linearly graded from 34.9 µm at

the input down to 34.5 µm for the last filter. The gradation of the ring lengths are

1cf. Fig. 3.6.
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Figure 5.3: a) Dark-field micrograph of the CSM. b) Bright-field micrograph
of a single filter element of the CSM. Light input, through the bus waveguide,
from the right, is dropped to the grating coupler. Light input, from the left, is
dropped to what will eventually be a Ge photodetector for high-speed readout.
c) Transmission spectra, for the 24 filters, collected via each of the corresponding
grating couplers.

achieved by grading the lengths of the coupling regions while keeping the bend radii

constant. The fabrication was performed using a fully CMOS process, at Sandia

National Laboratories, on a 6-in. silicon-on-insulator (SOI) wafer. The waveguides

are fully etched strip waveguides, which were oxidation trimmed to 230-nm thick-

ness and oxidation smoothened for sidewall-roughness reduction and mitigation of

optical propagation loss. To mitigate dispersion in the directional couplers, the

bus waveguide was given a width of 550 nm while the straight portions of the rings

were given a width of 400 nm. The wall-to-wall gaps of all the directional couplers

were 280 nm.

The CSM shown in Fig. 5.3 is a fully passive device; there are no dopant

implants, Ge epitaxy, or metallization. The measurements performed below were
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on this passive device. This design, however, was made with higher mask levels in

mind. Specifically, the rings are based on an adiabatically transitioned design [60]

in which the waveguide width evolves from 400 nm in the coupling region to 800 nm

at 90◦ away. The inner portions of the wide-waveguide sections may be n+ doped

thus forming a resistive heater that can thermo-optically affect the optical mode,

which traverses primarily through the undoped outer portions. The tether-like

structures interior to the rings may also be n+ doped to provide for electrical

contact to a metal layer for electrical routing. This design allows for thermo-optic

tuning of the filter passbands.

As seen in Fig. 5.3.b, opposite to the input bus waveguide, there are two

options at the output port. If light is input, through the bus waveguide, from the

right, then the dropped signal exits a grating coupler for fiber-based detection. If

light is input from the left, then the dropped signal is sent to what will be, in a

future iteration, a Ge photodetector. The use of on-chip detection will allow for

robust and packagable high-speed operation. In the present work, we detect the

output signal via grating-based fiber coupling to prove our concept.

The 24 filters each drop their signals to 24 corresponding detection ports,

which are the grating couplers on a 125-µm pitch. For testing purposes, the signals

from the gratings were individually coupled to a lensed fiber and detected with a

high-sensitivity InGaAs photodiode. We also coupled the grating signals to an

InGaAs sensor array, via a microscope, for the purpose of simultaneous readout.

Both methods yielded similar information for the input signals to be discussed

below.

5.4 Matrix implementation and experimental re-

sults

We now elucidate the actual implementation of the CSM, which is based

on the solution of a matrix equation. For the sake of example, we also describe

the experimental results concurrently.

The transmission spectra, of all 24 filters, as read out by coupling a fiber to
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the grating couplers, are plotted in Fig. 5.3.c. Due to the filter-to-filter gradation

of the ring lengths, the passband centers shift by ∼4 nm per filter. Additionally,

as explained in Sec. 5.6, there is intentional passband ripple as a result of im-

perfect apodization in the filter design. In contrast with the necessities specified

in Sec. 5.2, we see that the passbands in the experimental device are relatively

broad (e.g. they pass several 100-GHz ITU-T channels) and that there is signifi-

cant filter-to-filter crosstalk. As is common, Fig. 5.3.c was obtained by sweeping a

narrowband tunable laser (ideally a delta function) over the range of wavelengths

indicated. The output-port axis is clearly discrete, due to the finite number of

filters present. The appearance, however, that the wavelength axis forms a contin-

uum, is due to the experimental fact that many wavelength points are recorded.

In reality though, any experimental recording must be inherently discrete. We can

then interpret Fig. 5.3.c as a 24 × N matrix, where the transmission axis forms

the non-discretized entries of each element of the matrix and N is the number of

wavelength data points recorded during each sweep of the tunable laser.

Without loss of generality, let us suppose that the input spectrum to the

CSM is composed of five ITU-T channels, spaced 100-GHz apart, as plotted in

Fig. 5.4.a. Because we seek a matrix interpretation to the problem of channel

monitoring, we can discretize the input spectrum into the five channels of interest,

as plotted in Fig. 5.4.b. The individual powers that are plotted are the individual

spectral integrations of each respective source as would be obtained, for example, if

one sends a single channel directly to a photodetector without first dispersing the

spectrum. Regardless of the interpretation of the input signal, when the foregoing

spectrum is sent through the CSM, the powers measured at the 24 output ports

are as plotted in Fig. 5.4.c. In the continuous interpretation, the full spectrum

(Fig. 5.4.a) is multiplied by each of the 24 rows in Fig. 5.3.c to yield the 24 output

detector readings. In the discrete (i.e. matrix) interpretation, the discretized spec-

trum (Fig. 5.4.b) is multiplied by some appropriately channel-discretized version

of Fig. 5.3.c, which will be interpreted as a 24 × 5 matrix below, to yield the 24

output detector readings.

Let us the call the desired 24 × 5 matrix T. In analogy with the inter-
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Figure 5.4: a) Five-channel input spectrum. b) The powers carried in each
of the input channels. This plot corresponds to the data plotted in (a), but is
spectrally resolved only over the channels of interest instead of over a wavelength
continuum. Each bar represents the spectral integration of each respective source,
performed individually. c) Powers read out at the 24 output ports when the input
signal to the CSM corresponds to (a) and (b).

pretation that the wavelength axis of Fig. 5.3.c is formed via N wavelengths, we

can form T by inputting our five channels of interest, normalized to 0 dBm each,

into the CSM one-at-a-time. For each input channel, we measure the 24 outputs.

This yields the 24×5 matrix T, which mathematically connects Figs. 5.4.b–c. The

foregoing measurements serve as the initial device calibration. We are now able to

write the matrix equation

D = TP, (5.7)

where P is a five-element column vector containing the input powers (i.e. the vector

representation of Fig. 5.4.b) and D is a five-element column vector containing the

output-port detector readouts (i.e. the vector representation of Fig. 5.4.c). This

equation is diagrammed in Fig. 5.5.

The foregoing equation is the mathematical statement that the CSM maps

the input powers P to the output detectors D. However, in the spirit of channel

monitoring, we are interested in being able to reconstruct P from an arbitrary set

of detector readouts D. I.e. we are interested in the solution to the inverse problem

P = T−1D, (5.8)

where, because we are working with a rectangular matrix, T−1 is the Moore-Penrose

pseudo-inverse of T [94, 95]. It is evident that the problem of channel monitoring,

as we have stated it, has been reduced to a problem in linear algebra.
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Figure 5.5: The matrix equation D = T× P, respectively. T, which is obtained
through the initial device calibration, allows for the unique prediction of D, given P.
We are more interested, however, in the inverse problem of determining P, given D.

Instead of explicitly calculating the pseudo-inverse, (5.8) can be solved di-

rectly via the QR-factorization of T [96, 97]. Several experimental examples of

solving (5.8) via QR-factorization are shown in Fig. 5.6. The left column of Fig. 5.6

shows detector readouts for three sets of inputs where the channel powers vary be-

tween sets. The right column shows the “unknown” input powers (bars) along

with the powers that are inferred (stems) via the solution of (5.8). These data

show that the matrix implementation of the CSM is able to determine the input

powers to within an acceptable amount of error.

Looking at the bars in Fig. 5.6.b, we see that Ch. 55–58 are attenuated

while Ch. 54 is held constant. Taking this example further, we continue to atten-

uate Ch. 55–58 while holding Ch. 54 constant. In Fig. 5.7.a, we show the CSM’s

ability to track the power changes in the relevant channels over a dynamic range

of ∼17 dB, with a maximum error of ∼1 dB. The CSM also recognizes that Ch. 54

does not suffer any attenuation.

Finally, if one desires, the spectrum may be reconstructed from the data in

Fig. 5.6.b. If one characterizes the normalized lineshapes of the individual channel

sources (e.g. during initial system set-up), then the spectrum can be reconstructed
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Figure 5.6: a) Experimental detector readouts. Each set corresponds to different
amounts of powers carried by the five channels. b) Input powers in the five channels
corresponding to (a). The bars show the actual “unknown” inputs. The stems show
the results of computing the solutions to (5.8), thus indicating the realization of a
channelized spectrum monitor.
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Figure 5.7: a) Tracking ability of the CSM. Channels 55–58 are attenuated
while Ch. 54 is held constant. The dashed lines show the ideal result; the markers
show the actual result of using the CSM. Reasonable tracking is observed with a
dynamic range of ∼17 dB. b) Reconstruction (black trace) of the original input
spectrum (red trace) by weighting pre-characterized source lineshapes.

by weighting the lineshapes by the corresponding inferred powers and then sum-

ming the lineshapes. An example of this, corresponding to the last row of Fig. 5.6,

is plotted in Fig. 5.7.b. We see that this method accurately reconstructs the source

lineshapes, but overestimates the ASE noise floor. The overestimation of ASE is of

little concern because our original intent was to track the powers over a spectrum

discretized by the number of channels and not over a continuous one.

5.5 Robustness to catastrophic failure of filter

elements

The architecture of the CSM endows upon it a certain degree for fault

tolerance. If several of the filters fail, as long as there are still more filters than

there are input channels, it is possible that the CSM may still continue to operate

as good as, if not better than, when the full filter bank was present2. Continuing

with the example from the foregoing section, we assume that catastrophic failure

occurs to 19 of the 24 filters. Specifically, we assume that we are able to measure

light only from output ports 10, 14, 19, 22, and 23, as shown in Fig. 5.8.a. The

2We defer the mathematical conditions, under which the CSM operates nominally, to the next
section.
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Figure 5.8: a) Dark-field micrograph of the CSM showing the filter elements
used in the five-element test. The other 19 filters can be considered to be unusable
due to catastrophic damage. b) The matrix equation D = T× P, respectively (cf.
Fig. 5.5). Both T and D are reduced, from the previous section, from 24 to five rows
but P remains the same size. c) Actual (bars) and inferred (stems) input powers,
showing the CSM operating nominally under the condition of reduced output-port
data.

effect of this is that the number of rows, in the matrices D and T, are reduced from

24 to five. The number of rows in P, however, remains five because the number

of channels has not decreased. The new T is simply the 10th, 14th, 19th, 22nd, and

23rd rows of the old T. The new matrix multiplication is diagrammed in Fig. 5.8.b.

The prescription at this point proceeds as before; i.e. solving the matrix equation

P = T−1D. (5.9)

An example solution, showing nominal operation of the CSM, is plotted in Fig. 5.8.c.

We now perform the same attenuation experiment as before; i.e. Ch. 55–58

are attenuated while Ch. 54 is held constant. In Fig. 5.9, we show the CSM’s

ability to track the power changes in the relevant channels over a dynamic range

of ∼21 dB. This range is slightly higher than when all 24 filters were used. Further-

more, the error within the tracking range is tighter (< 1 dB) than in the former

case; although, there seems to be slightly more error in tracking Ch. 54, which

does not suffer any physical attenuation. It is therefore evident that the CSM can

operate with reduced output ports.
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5.6 Mathematical elaborations

To summarize the matrix implementation of the CSM: An arbitrary, but

unknown, power distribution is represented by the n-element column vector P,

where the n vector elements correspond to the n wavelength channels of the net-

work. When this power distribution propagates through the CSM, power is routed

to m detection ports via the transmission spectra of the filters. These detector

readouts are represented by the m-element column vector

D = TP, (5.10)

where T is an m × n matrix that is measured as part of the initial device char-

acterization. During real-time operation, D is measured; however, the desired

information is P. Therefore, (5.10) must be solved for the unknown vector P.

In the experimental measurements, we took n = 5 and either m = 24 or

m = 5; i.e. we imposed that m ≥ n. Provided that T is of full rank, then the

condition m ≥ n provides that (5.10) exhibits a unique solution for P [98]. If

m < n, then the system of equations represented by (5.10) is under-determined
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and the solutions for P may not be unique. Therefore, the CSM requires that

m ≥ n.

If T is rank deficient, then P may not have a unique solution even if m ≥ n.

Therefore, the filter design of the CSM must be performed with the intention that

T must be of full rank. To ensure unique columns of T, the rings were graded

in length, from filter-to-filter, thus yielding the graded transmission spectra of

Fig. 5.3.c or the T matrices of Figs. 5.5 and 5.8.b. Additionally, the coupling

coefficients of the rings were chosen such that the transmission spectra of the

filters were not apodized. This gave rise to significant, and somewhat random,

passband ripple in the transmission spectra. This is essentially a dithering process

to further aid in ensuring that T is of full rank. The ultimate resolution of the CSM

is determined by the point at which two adjacent channels yield non-independent

columns during the initial construction of T.

If the above restrictions on T are satisfied, the solution of P is easily ob-

tained. If the system is critically determined (m = n), then (5.10) can be directly

solved by Gaussian elimination, LU-factorization, or similar [98]. If the system is

over-determined (m > n), then QR-factorization is useful [96, 97]. In this case, T
can be factorized such that

T = QR, (5.11)

where Q is orthogonal and R is upper-triangular. This allows us to write

RP = QTD, (5.12)

which is easy to solve by backwards substitution3. Of course, although computa-

tionally more expensive, one could directly calculate the matrix inverse (for m = n)

or the Moore-Penrose pseudo-inverse (for m > n) [94, 95] of T and determine the

solution via

P = T−1D. (5.13)

All of the foregoing methods provide unique, optimal solutions in the least-squares

sense [98].

3The last row of R only has one element, thus yielding the solution to the last element of
P. This can be substituted into the second-to-last equation of the system, thus yielding the
second-to-last element of P, and so forth.
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Chapter 6

Routing of a Data Center

Network Through a Wideband

Thermo-Optic Switch

6.1 Overview

Data-center networks with optical interconnects [11, 12] may lower energy

consumption, and scale more efficiently if silicon photonic components can replace

some of the conventional off-the-shelf components used today. MORDIA (Mi-

crosecond Optical Reconfigurable Datacenter Interconnect Architecture), shown

in Fig. 6.1, is a multi-wavelength, multi-port optical circuit-switched network, de-

signed to support a wide variety of all-to-all communication workloads, e.g. MapRe-

duce, TritonSort, and data sorting and searching [100]. It may benefit scalability,

re-configurability, and maintenance of networks if optical switching can be incor-

porated within the ring. Such switches have to be capable of supporting the full

optical bandwidth in the ring (here, more than 30 nm) and be reconfigurable

in a few microseconds (currently about 12 µs in the MEMS-based implementa-

tion [100]). It is also necessary that such a switch be energy efficient, and can be

driven in a manner that is compliant with digital controllers.

While thermo-optic silica and polymer switches are mature technologies,

63
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and have shown excellent output-port contrast [101], their large footprints, large

power consumptions, and relatively slow switching times suggest areas for improve-

ment. Silicon can be used to make a broadband, yet energy-efficient, microsecond-

scale switch that is highly integrable and can operate on many wavelength channels.

One method is to use a microring resonator, designed with a free-spectral range

(FSR) equal to the inter-channel spacing. All-optical switching of 20 CW wave-

lengths (and one data channel) in this configuration has been demonstrated, albeit

with a significant power penalty and change-of-slope in the bit-error-rate sensi-

tivity curve [102]. In principle, the microring could be thermo-optically switched:

energy-efficient thermo-optic tuning of a microring has been demonstrated with

a power consumption of only 0.5 mW per nanometer of wavelength shift, and a

10%-90% switching time of about 1 µs [103]. However, this resonant structure

may be subject to crosstalk between the optical channels, and the alignment of the

resonances to the ITU-T wavelength grid may depend on temperature. Also, the

coupling coefficient of a compact directional coupler, as typically used between a

microring and a waveguide, tends to vary widely with wavelength [88], and longer

(adiabatic) couplers, which overcome this limitation, may not allow the microring

resonator to achieve the requisite free-spectral range.

A second approach is to use a Mach-Zehnder interferometer (MZI) [104];

implemented here with wideband 3-dB couplers, and an energy-efficient thermo-

optic phase-shift mechanism in one arm. Compared to carrier injection in silicon

MZIs, the thermo-optic MZI should have smaller insertion loss and greater scal-

ability to larger switching fabrics, because the device is much smaller as a result

of the larger magnitude of the thermo-optic effect, compared to the free carrier

plasma dispersion effect. Here, the 3-dB couplers attempt to achieve wavelength-

insensitive power splitting by lithographic design [105]. However, the thermo-optic

phase shift should also be wavelength-insensitve, which can be fundamentally dif-

ficult to achieve. While care has been taken to investigate the nonlinearity of the

thermo-optic phase shift with temperature [106], the wavelength variation of this

effect remains relatively unexplored.

The differential phase shift dφ accumulated in an incremental distance dx
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of optical path length is not only proportional to the change in the refractive index

∆n induced by the temperature rise ∆T , but is also inversely proportional to the

optical wavelength λ, i.e. dφ = (2π/λ)∆n dx. Thus, to minimize the variation

of the cumulative phase with wavelength, we need to increase the magnitude of

∆n, so that integration over a long optical path length is not required to achieve

π phase shift. This requires increasing the temperature range ∆T introduced

by the heating source, and also minimizing the spread of the temperature away

from the heating source along the optical path, so that the range of integration is

minimized. Efficient and fast heating can be achieved by directly heating the silicon

waveguide in close proximity to the optical mode [103, 105, 107, 108]. Reducing

the heat spreading along the silicon waveguide can be achieved by varying the

driving waveform at sub-microsecond time-scales, as discussed in Section 6.3.1.

Here, we demonstrate and characterize microsecond time-scale cross-bar

digital switching of twenty 10 Gbit/s wavelength channels spanning the wave-

length range from 1531.12 nm (ITU Channel 58) to 1563.05 nm (ITU Channel

18), using a thermo-optically driven wideband Mach-Zehnder interferometer, with

an electrical power consumption of 15 mW and a 10%-90% switching time of 11 µs.

We investigate the 2 × 2 switch as a building block of a larger switching fabric;

therefore, optical coupling to and from the chip was not optimized and we incurred

large losses (about 10 dB per coupler) when using lensed tapered fibers and multi-

access nano-positioning stages. Electrical contacts to the chip were made using a

multi-contact wedge. There was no need to stabilize the chip temperature in the

demonstration (i.e. no power consumption for thermo-electric cooling).

6.2 A thermo-optic switch with cascaded phase

shifters

The switch described here is based on a Mach-Zehnder interferometer (MZI),

with adiabatic wideband 3-dB splitters [105]. The switch was operated by heating

one arm of the MZI shown in the Fig. 6.2, which, in general, causes an amplitude

and phase change in that arm. When no DC voltage was applied to the contact
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Figure 6.1: A) Hardware for the optical circuit-switched multi-wavelength MOR-
DIA ring network at UC San Diego, including data servers, optical amplifiers (ED-
FAs), optical spectrum analyzer (OSA) for power monitoring, and hardware for
wideband wavelength-selective switching (WSS). There are six nodes and four host
stations per node. B) Schematic of the ring network topology, in which any of the
nodes can access the full bandwidth of the ring (about 30-nm wavelength span).
C) Optical spectrum of 20 data channels, each carrying 10-Gbit/s data, used in the
switching demonstration (some extraneous channels, not carrying data, or at long
wavelengths that lie outside the range of the tunable filters used to measure the
individual eye patterns, also propagated through the chip but were not measured
here).
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pads labeled Vmod in Fig. 6.2, all the wavelengths exited the device in the “cross”

port, i.e. the device is, to a good approximation, bias-voltage free. Upon applying

a voltage to the contact pads shown in Fig. 6.2, all the wavelengths are switched

over to emerge from the “bar” port. Unlike conventional thermo-optic MZIs, in

which a metallic heater is fabricated at some distance from the silicon waveguide,

and separated from it by a certain thickness of insulating oxide [109], current was

driven through a dopant-implanted region of the waveguide itself, in close prox-

imity to the optical mode. The waveguide was widened in certain regions from

about 0.4 µm to about 1.0 µm, N-doped, and contacted with narrow N-doped sil-

icon tethers connected to metal, through which an electrical current was directly

injected in close proximity to the optical mode. The device was fabricated, us-

ing a fully CMOS-compatible process with 248-nm lithography at Sandia National

Laboratories, on a 150-mm silicon-on-insulator wafer (250-nm active layer, 3-µm

buried oxide). The waveguides were fully etched with nominal width × height

dimensions of 400 × 230 nm2. Additional details are described elsewhere [105].

An earlier version of the device with a single phase-shift element in each

arm has been previously reported [105, 108]. The MZI used here comprises a

sequence of five thermo-optic phase shifters in each arm. As shown schematically

in Fig. 6.2, the five resistors were electrically driven in parallel (Rtotal = 1.17 kΩ),

thus reducing the drive voltage needed to achieve π phase shift from Vπ = 20 V for a

single-element phase shifter to about Vπ = 4.25 V. Characterization measurements

showed that heaters could withstand no more than about 40 mW of electrical power

before damage, and that the five-element parallel-heater structure was noticeably

more robust than the single-element heater. However, there is a concern regarding

the increased insertion loss, since each of the five phase-shifting elements imparts

some loss to the optical transmission in the “hot” state, when an electrical current

passes in close proximity to the optical mode. This issue is investigated in the

following section.
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Figure 6.2: A) Mach-Zehnder interferometer thermo-optic silicon-photonic cross-
bar switch with bias voltage (Vbias, unused) and switching voltage (Vmod = 0 V or
Vmod = 4.25 V) indicated. The region highlighted in yellow contains a bank of five
phase shifters, as shown schematically in (B). B) The optical field experiences a
thermo-optic phase-shift in each of the widened arcs, the inside of which is doped
to create a resistor. These resistive heaters are electrically wired in parallel, so as
to reduce the switching voltage compared to a single heater. The axial co-ordinate
x is referred to in Section 6.3.1.

6.2.1 Device modeling and parameter extraction

The switch structure shown in Fig. 6.2.A was modeled using transfer ma-

trices. We label the optical field amplitude cross-coupling and through-coupling

coefficients by κ and t, respectively [73]. The transfer function of the device can

be calculated as a cascade of coupling (C) and propagation (P) matrices:

(
bar

cross

)
=

C︷ ︸︸ ︷(
t κ∗

κ −t∗

)
·

P︷ ︸︸ ︷(
a eiφ 0

0 1

)
·

C︷ ︸︸ ︷(
t κ∗

κ −t∗

)
·
(

1

0

)

=

(
at2eiφ + |κ|2

aκteiφ − t∗κ

)
(6.1)

where φ is a function of the thermally-induced phase shift, and hence, of the applied

voltage. The parameter a in matrix P represents the loss introduced by heating

portions of one of the MZI arms, by driving an electrical current in close proximity
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to the optical mode, as shown in Fig. 6.2.B. We take a = 1 when no voltage is

applied, and also assume that the lower-right term of P (i.e. the unheated arm)

has no thermally-induced amplitude attenuation. A common multiplicative factor

(amplitude or phase) affecting all the terms of the P matrix has no bearing on

the parameter extraction algorithm described below, which is based on ratios of

measured bar and cross transmissions.

The measured quantities were 10 · log10 |bar|2 and 10 · log10 |cross|2, as func-

tions of wavelength, and for different voltages as shown in Fig. 6.3. As with all

MZI devices, at certain voltages, the bar transmission was minimized and the cross

transmission was maximized; in the present device, this occurred, to a good ap-

proximation, with no voltage applied, i.e. exp(iφ) was approximately −1, based

on the algebraic form of (6.1). More precisely, we write exp(iφ)V=0 = − exp(iδ0)

where the small parameter δ0, a function of wavelength, represents a phase vari-

ation because it is generally impossible for lithography to achieve exact phase

equality over a wide range of wavelengths (here, exceeding 30 nm). The bar trans-

mission was maximized, and the cross transmission was minimized, when a voltage

of Vπ ≡ 4.25 V was applied. In this case, exp(iφ) was approximately +1, and we

write exp(iφ)V=Vπ = + exp(iδV ).

From (6.1), the algebraic expressions for these quantities are:

baron = 20 · log10

∣∣a t2eiδV + |κ|2
∣∣; crossoff = 20 · log10

∣∣−κteiδ0 − t∗κ∣∣;
baroff = 20 · log10

∣∣−t2eiδ0 + |κ|2
∣∣; crosson = 20 · log10

∣∣a κteiδV − t∗κ∣∣. (6.2)

To each of the expressions in (6.2) must be added the fiber-to-chip coupling losses

at each interface. To factor out the latter, we defined four ratios: baron/baroff ,

crossoff/crosson, crossoff/baroff , and baron/crosson. In Fig. 6.3, we assumed |κ|2 +

|t|2 = 1, i.e. the coupler sections were lossless, and relax this assumption in Fig. 6.4.

We calculated the remaining four parameters (|κ|2, a, δ0, and δV ) based on a

Levenberg-Marquardt nonlinear fitting algorithm [110, 111]. We are interested in

quantifying the wavelength variations of |κ|2, a, and the “phase slip” parameters

δ0 and δV .

Figure 6.3 shows the extracted parameters for the measured device. There

are two possible mathematical solutions at each wavelength for |κ|2 and for a, which
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Figure 6.3: A) Transmission in the cross and bar output ports, at 0 V
(crossoff and baroff), and Vπ = 4.25 V (crosson and baron) applied to the switch-
ing arm. Using the algorithm described in Section 6.2.1, the wavelength variation
of the main device parameters were measured. There are two mathematical solu-
tions, shown in black and green, and the physically meaningful ones are plotted
in black. B) The coupling coefficient for the adiabatic 3-dB couplers (nominally
0.5). C) The loss induced in the “hot” state by the cascade of five phase shifters
(a = 0.5 dB for five heaters implies 0.1 dB loss per heater section). D) The wave-
length variations of the phase parameters which describe the phase slip from 0 or
π phase. As shown by the flat lines for δ0, there is no wavelength variation of the
phase slip when no voltage is applied; however, there is significant variation with
wavelength in δV . Note that both branches of the |κ|2 solution result in the similar
phase estimations for |δV |.
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are indicated by black and green colors1. The former was seen to be the physically-

correct solution by performing an additional experiment: we measured the baron

transmission (i.e. when voltage was applied to the heater) when the heater in the

cross arm was heated, instead of in the bar arm2. In this new configuration, the

bar arm was left unheated. (With reference to Fig. 6.2.A, we switched the role

of the Vbias and the Vmod electrical contacts, while leaving the optical input, bar

and cross pathways as indicated.) The baron transmission was seen to increase (by

0.5 dB) at all wavelengths. The two measurements are represented by

baron|(bar heat) = 20 · log10

∣∣a t2eiδV + |κ|2
∣∣

baron|(cross heat) = 20 · log10

∣∣t2 + a |κ|2eiδV
∣∣. (6.3)

Assuming that the heaters are identical (and 0 < a < 1), the observation that

baron|(cross heat) was greater than baron|(bar heat) implies that |κ|2 < 0.5. (On the

other hand, |κ|2 > 0.5 would result in the baron transmission decreasing when the

cross arm was heated instead of the bar arm.)

As shown in Fig. 6.3.B, the nominally 3-dB couplers were, in fact, slightly

imbalanced as a function of wavelength. However, even a 60-40 splitting imbalance

has only a minor effect on crossoff , and mainly impacts baroff , i.e. reduces the

contrast between baron and baroff . The ability to trim the splitting ratio may be

useful in order to achieve higher contrast throughout a wide range of wavelengths.

Figure 6.3.C quantifies the attenuation in the “hot” arm of the MZI with

20 · log10(a) ≈ −0.5 dB resulting from the cascade of five heaters in series. The

loss of a single heater section is therefore about -0.1 dB, which is consistent with

finite-element simulations [108]. This low loss suggests that a significant number

of thermo-optic 2 × 2 switching elements can be cascaded, in order to build up a

larger switching fabric.

A non-zero value of δ0 limits the amount of interferometric cancellation

between −t2 and |κ|2 in the expression for baroff in (6.2), and also affects crossoff .

1For example, by examining the expression for ‘baroff ’ in (6.2) in the simple case when δ0 = 0,
we see that −t2 + |κ|2 (for |κ| > 0.5 and t < 0.5) and +t2 − |κ|2 (for |κ| < 0.5 and t > 0.5) give
the same numerical value.

2 One could also heat the original arm while switching the input to the originally unused port,
with similar arguments following.
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Figure 6.4: A) Similar spectral variations were extracted for the coupling coeffi-
cient under the three separate assumptions: no coupler loss (|κ|2 + |t|2 = 1, shown
in black), or increasing amounts of loss, (|κ|2 + |t|2 = 0.95, shown in blue, and
|κ|2 + |t|2 = 0.90, shown in red). B) For these three assumptions, the differences
in the loss induced in the “hot” state were not significant. C) The three assump-
tions also gave essentially the same estimate regarding the variation of the phase
slip with wavelength in the “hot” state, |δV |. There is not much significance to
the numerical value of the phase slip in the “cold state” |δ0| since a spectrally-flat
phase slip can be easily compensated for by heating the bias arm; however, the
wavelength-dependent variations in |δV | cannot be compensated by a bias volt-
age simultaneously at all wavelengths and pose a fundamental limitation to the
extinction ratio of the switch.
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Going beyond this, we are interested in the difference between δV and δ0, since

ideally, the wavelength variation of both these quantities should be identical, if

the heating-induced phase shift had no spectral dependency. However, Fig. 6.3.D

shows that the relative phase slip, i.e. the difference between |δV | and |δ0|, is not

spectrally flat. This is not unexpected, because the voltage-induced phase shift is

both a function of wavelength and the effective index change due to temperature

(∆φ ∝ ∆neff/λ).

In Fig. 6.4, we investigate the assumption made earlier that |κ|2 + |t|2 = 1.

Specifically, we made alternate assumptions that |κ|2 + |t|2 = 0.95 or |κ|2 + |t|2 =

0.90 (the latter implies nearly -0.5 dB loss per coupler, which is rather high for this

fabrication technology). There was no observable difference in our estimate of a

(heating induced loss), or of the wavelength variations of the phase-slip parameters

(from 0 or π, respectively, when voltages of 0 and Vπ volts were applied). Similar

to previous investigations of coupler loss [88], under the assumptions of increased

coupler loss, there were corresponding small reductions in the estimated |κ|2 values,

preserving the wavelength trends observed in Fig. 6.3. These results show that

relaxing our earlier assumption that the couplers are lossless to practically-relevant

coupler-loss numbers does not significantly change our conclusions regarding the

wavelength variation of the switch parameters, or the approximate magnitude of

the heating-induced loss.

Taken together, the results shown in Fig. 6.3.B–D suggest that the most

significant reason for limited on-off contrast in Fig. 6.3.A was the heating-induced

spectral slip. Although |δ0| was flat over all wavelengths (since the couplers are

adiabatic and the two arms of the MZI were fabricated with nearly exactly equal

lengths), the wavelength variation of |δV | was clearly evident. For example, a phase

imbalance of about 0.4 radians limits the on-off contrast to about 14 dB even if

we were to take a = 1 and |κ|2 = |t|2. Referring back to (6.1), the bandwidth of

this switch was limited by the properties of the matrix P (the phase shifter) rather

than the matrix C (the couplers).
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6.2.2 A digression on the choice of the coupling matrix

In (6.1) we used the transfer matrix [73]

C =

(
t κ∗

κ −t∗

)
(6.4)

to model the directional couplers of the switch. This led to the curious result

that, at zero bias, the upper arm experienced a phase difference of φ = π with

respect to the lower arm, even though the two arms are equivalent. This zero-bias

π phase shift comes about because of the negative sign in (6.4). Physically, C
above says that light that passes “through” (i.e. not “coupled” across via κ or κ∗)

the directional coupler will suffer no phase delay if traversing the top path via t

and will suffer a π phase delay if traversing the bottom path via −t∗. It is because

of this implicit π phase shift in C that the full MZI switch exhibits a zero-bias

phase delay. This zero-bias phase delay can be eliminated by a redefinition of C,

which amounts to a choice of phase convention. Indeed, it is not uncommon to see

other choices of C in the literature [47, 113].

In analogy with quantum mechanics, a proper transfer matrix should be

both unitary (C†C = 1) and unimodular (|det C| = 1). From these conditions,

the energy conservation condition, |t|2 + |κ|2 = 1, follows. E.g. enforcing unitarity

and unimodularity on (6.4) immediately implies the energy conservation condition.

With these constraints in mind, it is easy to write down other choices of C. One

such choice is

C =

(
t κ

−κ∗ t∗

)
. (6.5)

This matrix, when used in (6.1), yields the more common condition of φ = 0 at

zero bias. Additionally, when using the foregoing, det C = 1; however, when using

(6.4), det C = −1. Apparently, det C is directly related to the zero-bias phase shift

of the MZI. Other valid choices for C can be obtained from (6.5) by moving the

negative sign to any of the other matrix elements, as well as moving either or both

of the complex conjugations to the corresponding opposite side of its diagonal, for

a total of 16 possibilities. If the negative sign appears on an off-diagonal (diagonal)

element, then det C = 1 (det C = −1).
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Two other possible choices are

C =

(
t ±iκ
±iκ t

)
, (6.6)

where t and κ are both real. Two more choices are obtained by negating the t’s in

the foregoing. In all four of these cases, det C = 1.

In all of the above examples, the overall device operation remains un-

changed. The only thing that changes is the initial zero-bias phase reference.

Therefore, making a choice for the form of C is to make a choice for one’s phase

reference. In the foregoing, we have briefly discussed 20 of the most “common”

choices3. Another 20 choices are possible by multiplying (6.5) by −1, and by mov-

ing the i’s in (6.6) to the diagonal elements, and then stepping through the above

discussions. Many more sadistic choices may be possible by appropriate use of

unit-magnitude complex exponentials.

6.2.3 Comparison with silicon-photonic carrier-injection

switches

The algorithm we have developed in Section 6.2.1 can be used to study the

performance of any silicon photonic 2× 2 switch. To demonstrate this utility, we

have taken the data for two other broadband, energy-efficient, silicon, electro-optic

switches from the literature [2, 3]. In both these cases, current was driven through

the silicon waveguide cross-section in close proximity to the optical mode; however,

both relied on the refractive index shift due to the plasma dispersion of injected

free carriers [32]. The design goals are the same as those of our thermo-optic

switch: to minimize the on-state insertion loss and to achieve wideband operation

with low crosstalk.

Figure 6.5 shows the results of running the extraction algorithm on the

present, as well as on the literature, devices. Subsequent reconstruction of the

experimentally measured transmission spectra, which makes use of the extracted

3 Realistically, (6.4)–(6.6) seem to be the most common choices. The other 18 are then
already within the realm of strange and unusual. The many more after that, therefore, may be
mathematically correct but practically unnecessary.
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device parameters, are also shown; this confirms the validity of the extracted pa-

rameters. In the case of the literature devices, a similar procedure, as discussed

in the foregoing section, was performed to ascertain the correct solution branch.

In the respective reports, data is also included for the on-state bar transmission

when the input port is switched to the originally “unused” port (e.g. switching the

input port to the unlabeled port in Fig. 6.2.A). The correct solution branch is then

identified by comparing the relative magnitudes of this second bar transmission to

the on-state bar transmission in Fig. 6.5.

Several observations can be made by comparing the columns of Fig. 6.5.

The slightly improved transmission contrast of the literature devices occurs as a

result of values of |κ|2 closer to 0.5 as well as more favorable phase slips. In the

present device, the improved tracking of the crosson response to the baroff response

occurs because of less on-state loss. In all three devices, the presence of loss limits

the attainable transmission contrast as per (6.2).

The measured insertion loss a (in units of decibels) for a single 2× 2 switch

element can be used to estimate scalability. For example, the overall insertion loss

L (in units of decibels, excluding waveguide crossing loss) in an N×N Cantor-type

switch architecture scales with the number of ports N as

L = 2 (log2(N − 1) + log2 (log2N)) a. (6.7)

For N = 64, the foregoing yields 8.5 dB of insertion loss for the current-driven

thermo-optic switch reported here, and 17 dB [2] and 29 dB [3] for the carrier-

injection switches.

6.3 Device response time and digital driving

Large scale switching fabrics constructed out of 2 × 2 building blocks will

require many electrical control signals. It will be more convenient if these signals

can be obtained from digital ports of an FPGA or microcontroller, e.g. via pulse

width modulation, rather than analog output ports. However, a digital driving

waveform potentially causes a concern with ringing, e.g. as is seen in the cur-

rent MEMS implementation of switching in MORDIA [100]. In this section, we
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Figure 6.5: Comparison of transmission spectra, intensity coupling coefficients
|κ|2, on-state loss a, and phase slips δ0 and δV for three different devices. First
column: data for the present device. Middle column: transmission data from
Ref. [2]. Last column: transmission data from Ref. [3]. The parameters in
each column; |κ|2, a, δ0, and δV ; were extracted from the respective transmission
spectra in the first row. For the sake of device-to-device comparison, each set
of transmission spectra is normalized to the maximum of its respective crossoff

response. Note that the abscissas are different column-to-column since the devices
are optimized for different spectral regions.
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discuss how to avoid ringing when driving the heater control using on-off volt-

age pulses. Experimental measurements include eye patterns and bit-error-rate

sensitivity measurements of switching with both analog and digital drives.

6.3.1 Digital heating: analytic formulation

The goal of this analysis is to obtain insight into the physical mechanisms

governing a compact heater driven by a time-varying waveform. For reasons dis-

cussed in Section 6.2.1, the length of the heated section should be kept short. The

silicon waveguide itself is narrow, and the surrounding oxide is a relatively poor

conductor of heat. For these reasons, it is reasonable to approximate each heated

section of the waveguide by a one-dimensional model, with x being the spatial

coordinate along the light path, and x = 0 defining the location of the heat source

(see Fig. 6.2.B). Light propagating past the hot spot picks up a phase around x = 0

over a length scale that is defined by the temperature profile. We will show this

length varies inversely with the square root of the driving frequency.

Because of the symmetry of the x coordinate, we can solve for the heat

distribution u(x, t) in the semi-infinite region x > 0 only, and extend the solution

to negative x. We seek the solution to the homogeneous diffusion equation,

∂u

∂t
= k

∂2u

∂x2
, with

u(0, t) = g(t),

u(x, 0) = 0,
(6.8)

where k is the thermal diffusivity of silicon (the thermal conductivity divided by the

product of the mass density and the specific heat capacity) and g(t) is the driving

waveform, which is proportional to the product of the square of the electrical

current and the electrical resistance, at x = 0. We expand g(t) in a Fourier series,

g(t) =
∑
n

Ane
iΩnt, (6.9)

where, since g(t) is a digital (e.g. pulse-width modulated) waveform with period

T , An ∝ 1/n and Ωn = n2π/T .

We can solve (6.8) by expanding u(x, t) in normal modes, paralleling (6.9),
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Figure 6.6: Pulse-width modulation of a digital heater drive (10 V amplitude),
with different duty cycles as indicated by the percentages. A) Using a slow
(10 kHz) drive, the rise and fall time constants were measured to be 11.1 µs and
11.3 µs, respectively, at 50% duty cycle. B, C) Here, both the drive frequen-
cies were greater than the inverse of the time constants. The vertical axis shows
the cross-state transmission when a heating voltage was applied, i.e. the desirable
transmission was as close to 0 as possible with minimum ripple. The results show
that at the lower frequency (B, 5 MHz), the residual ripple at the frequency of the
drive signal was greater than at a higher frequency (C, 15 MHz), in accordance
with the discussion in Section 6.3.1.
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and taking the Fourier sine transform of each term, defined as

ũn(ω, t) =
2

π

∫ ∞
0

un(x, t) sinωx dx, (6.10)

resulting in
dũn
dt

+ kω2ũn =
2

π
kωAne

iΩnt. (6.11)

Multiplying both sides by exp(kω2t) and integrating, we obtain,

ũn(ω, t) =

[
ũn(ω, 0) + i

2

π

kω An
Ωn − ikω2

]
e−kω

2t +
2

π

ω An
ω2 + iΩn/k

eiΩnt. (6.12)

Since the first term on the right-hand side quickly decays to zero, we inverse-

transform the second term, resulting in

un(x, t) ≈ An exp

(
−
√

Ωn

2k
x

)
cos

(
Ωnt−

√
Ωn

2k
x

)
. (6.13)

Thus, for each harmonic mode of the driving waveform, the heat spreads out to a

distance of about Ln ≡
√

2k/Ωn on either side of the origin. Based on k (silicon)

= 0.8 cm2/s, 2L1 = 2.6 µm for the n = 1 Fourier component for an alternating

current at 15 MHz, as used in the experiment described in Section 6.3.2. In general,

the effective heater length (and hence the thermally-induced phase shift picked up

by the light as it propagates past the hot spot) can be controlled not only by

amplitude but also by frequency, and by shaping the waveform, i.e. the amplitude

coefficients in the harmonic mode expansion.

To achieve error-free switching of 10 Gbps data, we are only interested in

the DC term and inhibition of ringing. For higher Fourier components, Ln ∝ n−1/2,

and further, An ∝ n−1, and only odd integers contribute in the case of a pulse-

width modulated square wave, i.e. the effective length and amplitude of the heater

for the higher harmonic components are too small to affect light propagation. As

such, we may expect that for AC frequencies that are high enough, there is no

Gibbs phenomenon associated with a digital current drive, whereas some ripples

may be seen if the frequency is reduced. In the latter case, the heat waves can

spread out over a longer distance, and thus, interact with the optical field over a

longer length, imparting a harmonic oscillation to the optical field. This is indeed

seen in the experimental traces shown in Fig. 6.6, where some ringing was observed

at 5 MHz, but not at 15 MHz.
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Figure 6.7: A) 10 Gbit/s eye patterns of cross and bar states (analog and digital
drives) for a selected channel at 1558 nm. B) Bit-error-rate (BER) power sensitiv-
ity curves, showing no penalty between analog and digital voltages for switching.
The optical power labeled on the horizontal axis was measured at the detector.

6.3.2 Experimental verification

Figure 6.7.A shows a typical eye pattern of a single 10 Gbit/s channel,

demonstrating that the same bar switching behavior was achieved by driving the

heaters with a 10 V, 42% duty cycle, rectangular waveform at 15 MHz, thus mim-

icking Vπ = 4.2 V. In Fig. 6.7.B, bit-error-rate sensitivity curves versus power

are shown in the three cases, at a representative wavelength of 1550 nm, using a

231 − 1 pseudo-random bit sequence. There was no observable penalty difference

between the DC drive and pulsed-drive bar states. The bar states show slightly

better sensitivity curves than the cross state. The cause for this difference is still

under investigation; one possible factor is that the switching voltage Vπ to enable

bar transmission was fine-tuned to its optimum value, whereas no voltage was ap-

plied to the MZI in the cross state, resulting in a small phase-slip in the latter case

at the measured wavelength.



82

18# 23# 24# 25# 26#

31# 32# 33# 39# 40#

41# 42# 47# 48# 49#

50# 55# 56# 57# 58#

BA
R$

A$

18# 23# 24# 25# 26#

31# 32# 33# 39# 40#

41# 42# 47# 48# 49#

50# 55# 56# 57# 58#

CR
O
SS
$

B$
,25#,20# ,15#,10# ,5# 0#

0#

2#

4#

6#

8#

10#
Cross#
Bar#

B$

Received$power$(dBm)$

Q
5fa

ct
or
$

A$

C$

10#

6#

2#
5# 7# 9# 10#6# 8#

Q5factor$

A

N
o.
$o
f$

ch
an

ne
ls
$

D$

Figure 6.8: 10 Gbit eye patterns (labeled by ITU-T DWDM channel number)
in the bar (A) and cross (B) states for server-driven data. Channel-to-channel
differences correspond to normal variations in the ring (cf. Fig. 6.1.C). C) For a
single channel at 1558 nm, Q-factor versus received power curves for the cross and
bar states are nearly identical. Horizontal red dashed lines ‘A’ and ‘B’ refer to an
estimated packet loss rate of 10−4 and estimated BER of 10−12. D) The histogram
of Q-factors, with all channels above the ‘A’ threshold.
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6.4 Performance in the network

The device was tested during live operation of the 20-wavelength network,

i.e. all wavelengths “loading” the device simultaneously. The network’s wavelength

channels all lie within the highest transmission-contrast region of Fig. 6.3.A. The

transmitters were commercial DWDM SFP+ form-factor modules transmitting 10

Gbit/s data, fed from computer servers, in 9000-bit-length TCP packets over single-

mode fiber at a power level between 1-3 dBm. Since no line-by-line equalization

of power levels in the ring is performed under normal operating conditions, this

results in non-uniform channel powers, as shown in Fig. 6.1.C. Figure 6.8 shows

open eyes for all indicated channels (20 x 10 Gbps) in both the cross and bar states.

As there was no difference between the bar (Fig. 6.8.A) and cross (Fig. 6.8.B) eyes

for all channels, the channel-to-channel variations can be attributed to the normal

differences in circulating power in the network itself.

Further evidence of the satisfactory performance of the silicon switch was

obtained from the Q versus received power measurements, where Q is the signal-

to-noise ratio measured from each eye pattern. In these measurements, a linear

PIN detector was used with 15 GHz bandwidth, 300 V/W responsivity, and noise

equivalent power NEP = 30 pW/Hz1/2, with optical pre-amplification using an

erbium-doped fiber amplifier and ASE filtering. As shown in Fig. 6.8.C, both sen-

sitivity lines have very similar slopes. The dashed red line labeled ‘B’ in Fig. 6.8.C

represents a bit-error-rate (BER) of 10−12, assuming Gaussian statistics, and the

line labeled ‘A’ represents a packet loss probability p = 1 − (1 − BER)L = 10−4,

where L = 9000 is the number of bits in a packet. All the eyes measured in

Fig. 6.8.A and Fig. 6.8.B were above this threshold, an order-of-magnitude lower

(better) than the typical packet error rate under normal software operating condi-

tions or due to congestion, buffer overflows, TCP incast, etc.

6.5 Summary

This chapter summarized the testing and component-level modeling of an

energy-efficient wideband silicon-photonic switching element used in a wavelength-
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division multiplexed ring network, whose good performance imposes no penalty on

the normal operating error threshold of the network. The parameter-extraction

method shows how to relate transmission measurements of switches (which are

commonly reported) to the intrinsic device parameters (which are less commonly

reported). The extracted parameters of this thermo-optic switch were compared to

those of two recently-published electro-optic switches. In all these cases, an elec-

trical current is driven in close proximity to the optical mode, in order to increase

the efficiency and reduce the switching speed of the underlying physical phenom-

ena. Minimizing wavelength variations of the passive couplers (e.g. by improving

the adiabatic coupler design or by using MZI splitters [2], multi-mode interference

couplers [3], or three-waveguide couplers [115, 116]), as well as of the phase-shifting

mechanism itself, will be important to achieve truly wideband crossbar switching

and fully exploit the spectral transparency advantage that optical switching has

over electronic switching.

In this demonstration, twenty server-driven 10 Gbit/s wavelengths between

1531 nm and 1563 nm with TCP packets were loaded onto the device and si-

multaneously switched between cross and bar ports in a footprint of 0.6 mm ×
0.05 mm. Although five heating elements were cascaded and driven in parallel to

reduce the required voltage, the cascaded losses in the thermo-optic “hot” arm

were only about 0.5 dB. The power consumption of this “fat pipe” switch is about

15 mW, and no thermo-optic cooling or temperature stabilization was required.

The measured on-off switching time constant of the chip-based switch was 11 µs,

which is about the same as the loss-of-light time in the current bulk-optics im-

plementation of the MORDIA network architecture [100]. Possible improvements

in the device performance may be made by reducing the contact resistance [117],

or by implementing a dual-drive operation [118, 119]. In summary, this compact,

broadband, microsecond-scale switch can be a low insertion-loss building block for

scalable switching fabrics using silicon photonics.

Chapter 6, in part, contains material, published in the following, of which

the dissertation author was the primary investigator:

R. Aguinaldo, A. Forencich, C. T. DeRose, A. Lentine, D. C. Trotter, Y. Fainman,
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G. Porter, G. Papen, and S. Mookherjea, “Wideband silicon-photonic thermo-optic

switch in a wavelength-division multiplexed ring network,” Opt. Express, vol. 22,

no. 7, pp. 8205–8218, 2014 [120].



Chapter 7

A Network-Node-on-a-Chip

7.1 Overview

In data center applications, optical interconnects have secured their place

providing point-to-point links between the top-of-rack (ToR) switches that route

rack-to-rack data communications. More recently, optical circuit switching has

been proposed and demonstrated to relieve data-center network congestion by

taking over the routing of larger flows of data traffic [12, 121, 90]. The use of bulk

optical components, however, can be energy and cost prohibitive when scaled up to

the size of industrial warehouse-scale computing. As such, chip-scale solutions for

data centers have been discussed with the envisioning of an optical rack-on-a-chip

[122] or network-on-a-chip [123]. As a first step towards these goals, we present an

optical network-node-on-a-chip (NNoC) that has been designed for the MORDIA

(Microsecond Optical Reconfigurable Datacenter Interconnect Architecture) net-

work at the University of California, San Diego. This optical application-specific

integrated circuit replaces the conventional off-the-shelf (COTS) optical hardware

in a network node by functional equivalents in silicon photonics. When manu-

factured in volume, silicon photonic chips are expected to be greatly inexpensive,

compared to their COTS counterparts [124, 93].

MORDIA is an optical circuit-switched, dense wavelength division multi-

plexed (DWDM), ring network [90]. It supports up to 24 hosts, representing 24

wavelength channels located throughout the C-band on the 100-GHz-spaced ITU-T

86
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telecommunications grid, from channels 15 (1565.50 nm) to 58 (1531.12 nm). Each

channel carries 10-Gbps data streams. The network is set up in a ring topology

with six nodes and four hosts per node; however, 23 of the 24 hosts are utilized in

the current implementation. In the present work, we scale the COTS hardware of a

single node to a chip-scale solution (Fig. 7.1.A-B). Like the COTS architecture, our

NNoC has the same architectural blue print for all six nodes and can be dynam-

ically reconfigured to address the pertinent channels in a specific node. As such,

the maintenance complexity and replacement-upon-failure costs are minimized.

The on-chip network node is functionally divided into three sections in

Fig. 7.1.C: VOA, Drop, and Add. The five input ports (labeled Drop/Express,

A, B, C, D) lead directly to variable optical attenuators (VOA), which allow for

electrically controlled equalization of the input signal powers. The Drop/Express

input accepts, from the network, the full bandwidth of 23 channels and leads to the

DROP section where four adjacent channels (∼400 GHz bandwidth) are removed

from the data stream and 19 are “expressed” to the output. Four new channels,

corresponding to the dropped wavelengths, are added to the express channels via

inputs A, B, C, D and the ADD section. The foregoing functionalities are sum-

marized in Fig. 7.1.D. The various sections are elaborated on below. The output

of the ADD section (containing the four multiplexed ADD channels) is combined

with the output of the DROP section (containing the 19 express channels) via a

wavelength-flattened, adiabatic, 3-dB coupler [105].

The fabrication of the NNoC was performed using a fully CMOS process,

at Sandia National Laboratories, on a 6-in. silicon-on-insulator (SOI) wafer. Fully

etched, 400-nm wide, silicon strip waveguides were oxidation trimmed to 230-nm

thickness and oxidation smoothened for sidewall-roughness reduction and mitiga-

tion of optical propagation loss. Dopant implants were used for the formation

of electronic diodes and resistive heaters. A single metal layer provided for low-

resistance Ohmic contacts and electrical connections. Light was coupled on/off the

chip via inverse-tapered waveguides, which were all located on one side of the chip

on a standard 127-µm pitch to facilitate coupling with a multi-fiber v-groove array.

An increased insertion loss of ∼10 dB/facet was suffered because of a waveguide-



88

to-fiber mode-field-diameter mismatch of 2.5 to 10.4 µm. Although this loss did

not impact the reported measurements, improvements are generally desirable and

can be attained with tapered-fiber arrays [126].

7.2 Drop functionality

A scale diagram of the ring resonators that constitute the DROP section

is shown in Fig. 7.2.A. The 4.5-µm diameter rings are based on an adiabatically

transitioned design [60] in which the waveguide width evolves from 325 nm in the

coupling region to 650 nm at 90◦ away. The inner portions of the wide-waveguide

sections are n+ doped thus forming a resistive heater that can thermo-optically

affect the optical mode, which traverses primarily through the undoped outer por-

tions. The tether-like structures interior to the rings are also n+ doped and provide

for electrical contact to the metal layer through which the spectra of the rings can

be electrically tuned. Wavelength channels that are resonant with the rings are

dropped to grating couplers (visible as yellow terminations in Fig. 7.1.C), which

can be used for diagnostics.

The full transmission spectrum of the DROP section (i.e. the sum effect of

the four rings) is plotted in Fig. 7.2.B for several applied voltages. The unmodified

spectrum of the MORDIA channels is plotted in grey in Fig. 7.2.C. The DROP

section is designed to extinguish a bank of four adjacent channels (∼400-GHz

bandwidth) while allowing the remaining 19 to propagate through. The three

cases in Fig. 7.2.C, which correspond to three different applied voltages, show this

functionality. A wide free spectral range (FSR) of 5.4 THz (43 nm) allows for

any group of adjacent MORDIA channels to be dropped without inadvertently

dropping another group. Nominally, the rings are electrically connected in parallel

(Req ≈ 160 Ω); they exhibit an electrical tuning efficiency of 17 mW per band of

four channels (21 mW/THz) when biased in the Ohmic regime.

Eye patterns for Ch. 34, corresponding to the top two panels of Fig. 7.2.C,

are plotted in Fig. 7.2.D. When Ch. 34 is allowed to propagate (Fig. 7.2.C, middle),

an open eye is observed at the output with a signal-to-noise ratio (SNR) of 7.6.
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Abstract: UCSD-MORDIA is a 24-channel, 240 Gbit/s six-node ring network used in many data-center 
modeling experiments. We present a single silicon photonic chip miniaturizing many of the critical needed 
functionalities of today’s rack-mounted network node.    

OCIS codes: (230.3120) Integrated optics devices;   

As part of our goal to replace conventional data-center network hardware by their functional equivalents in silicon 
photonics, here we describe the design, fabrication and measurement of a network node-on-a-chip for UCSD 
MORDIA (Microsecond Optical Reconfigurable Datacenter Interconnect Architecture). MORDIA is a multi-
wavelength, multi-port optical circuit-switched dense wavelength-division multiplexed (DWDM) ring network, 
supporting upto 24 optical wavelengths on the 100 GHz ITU-T grid in the C band between channels 15 (1565.50 
nm) and 58 (1531.12 nm), each carrying 10 Gbit/s data [1]. MORDIA is used in experiments on optically-connected 
data centers, and we would like to scale the conventional off-the-shelf (COTS) node hardware to a single-chip 
solution [2-4]. Each node drops or adds 4 channels (there are 6 nodes in total). Fig. 1 shows the MORDIA network 
node hardware and a silicon photonic chip implementation of a node. A chip can be thermo-optically tuned to 
address any group of 4 channels in the operational band of wavelengths.   
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Figure 1a, Current MORDIA network hardware; inset shows some of the rack-mounted components replaced by the chip b, 
silicon photonic network node-on-a-chip, with size comparison. c, optical image showing three sections, “add”, “drop” and 
variable optical attenuators (VOAs). On-chip heaters allow the four target channels (labeled “A” through “D”, spaced by 100 GHz) 
to be tuned throughout the C-band following MORDIA’s 4-on, 4-off channel plan.  

The chip was fabricated on 230 nm silicon-on-insulator (SOI) with dopants for p and n junction formation, and one 
metal layer for low-resistance ohmic contacts and electrical connections. The architecture of the chip is shown in 
Fig. 1c. The three major sections of this chip are functionally labeled “drop”, “add” and “VOA” (variable optical 
attenuator). The drop and add sections are tuned to specific wavelengths; the rest of the architecture attempts to be 
wavelength-insensitive. Most critically, the directional couplers which are not part of microrings were based on a 
wavelength-flattened design [5]. All the waveguide-to-fiber ports were located on one side of the chip on a standard 
127 µm grid for ease of coupling with a 10-fiber V-grooved array. The silicon waveguides were tapered and 
designed for 2.5 µm spot size;  however, at the present time, we were only able to use a standard fiber array (9 µm 
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Figure 7.1: A) Rack mounted hardware that makes up the MORDIA network.
The top half of the main image contains, from top to bottom, erbium-doped fiber
amplifiers and an optical spectrum analyzer. The top inset shows the remaining
optical hardware used in each host. For size comparisons, the bottom inset shows
the chip that contains the NNoC next to the FC-connectorized end of a fiber
patch cord. B) Bright-field micrograph of the optical integrated circuit. The
waveguides are mostly visually blocked by the metal lines that provide electrical
connections to the VOAs and waveguide heaters. Note that the bottom edge of
the micrograph is the actual edge of the chip where light may be coupled to optical
fiber. C) Dark-field micrograph, of the boxed section in (B), for another chip that
did not undergo metallization. The optical circuitry is more readily visible. The
major sections, as well as the input/output ports, are marked. D) Diagram of the
NNoC’s functionality. Note that the MUX symbol is a diagrammatic simplification;
actual multiplexing on the chip occurs in several stages. The add channels are
multiplexed by virtue of the four add filters outputting to a common bus waveguide.
After the ADD section, this bus waveguide leads to the first input of a 3-dB coupler.
The other input of the coupler is connected to the output of the DROP section.
Thus, the add and express channels are multiplexed at the 3-dB coupler.
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When Ch. 34 is “extinguished,” the eye closes to zero SNR; i.e. although “full”

extinction of dropped channels does not occur as per Fig. 7.2.C, Fig. 7.2.D indicates

that the dropped channel is indeed extinguished in the sense that the amplitude

of the dropped signal is completely within the decision threshold of a bit 0.

The eye patterns in Fig. 7.2.E correspond to the top panel of Fig. 7.2.C.

Although expressed bands adjacent to the dropped band suffer from slight atten-

uation, this is seen to not be troublesome at the system level because clear open

eyes are measured for the adjacent expressed bands at the output port. Similarly,

the eyes in Fig. 7.2.F, which correspond to the middle panel of Fig. 7.2.C., are

also open regardless of slight attenuation leaking over from the dropped spectral

region.

7.3 Add functionality

The ADD section in Fig. 7.1.C consists of four parallel input paths that

each lead to a two-stage (i.e. two-ring) ring-lattice filter. Similar to the DROP

rings, the 85.3-µm-long ADD rings also contain integrated heater-waveguides by

virtue of adiabatically transitioning the widths from 400 to 800 nm over each

90◦ arc. Within each individual filter, the two constituent rings are electrically

driven in parallel (Req ≈ 2.2kΩ); however, the individual filters are electrically

biased by different amounts such that the filter passbands correspond to the input

wavelengths of the corresponding host transceivers. The 850-GHz (6.8-nm) FSR

of the rings allows for an efficient tuning scheme in which the ADD section can

be reconfigured to pass any desired four-element subset of the MORDIA channels.

The four filters all output to a common bus waveguide, thus multiplexing the four

ADD channels. The output signal from one filter is not dropped when it passes

by the output of another filter because the filters are tuned to different resonant

wavelengths. Another method of multiplexing the four ADD channels would be to

use a 4-to-1 waveguide combiner; however, the present use of rings mitigates the

minimum 6-dB/channel insertion loss of such a combiner.

The transmission spectra of the ADD filters are plotted, in Fig. 7.3.A,
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Figure 7.2: A) Scale diagram of the silicon layer of the DROP section. Each ring
resonator drops resonant light to grating couplers, which are not shown. B) Trans-
mission spectra of the DROP section corresponding to injected currents (i.e. under
varying degrees of heating) of 0, 8, 10, and 13 mA for labels 1–4, respectively.
C) MORDIA channel spectra measured before (grey) and after (colors) the drop
section. From top to bottom, the panels correspond to the transmission spectra
in (B) that are labeled 1, 3, and 4, respectively. As the DROP filters are tuned, a
different group of four adjacent channels are dropped. D) Eye patterns for Ch. 34
corresponding to the first two panels of (C). As the filters are tuned from the mid-
dle to the top panel in (C), the eye closes by ∼26 dB indicating that a new Ch. 34
may be added to the network with impunity. E) Eye patterns corresponding to
the top panel of (C), which indicate that adjacent (i.e. expressed or non-dropped)
bands traverse through the DROP section without signal degradation. F) Eye pat-
terns corresponding to the middle panel of (C), also indicating non-degradation of
express channels.
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under the specific configuration scheme to add channels 23–26 to the network

(cf. Fig. 7.2.C, middle panel). At an ambient temperature of 25 ◦C, the pass-

band of filter A coincided with Ch. 26. Filters B–D were electrically tuned,

with an efficiency of 0.11 mW/GHz, to accept Ch. 25, 24, and 23, respectively.

To test the ADD functionality, we modulated 10-Gbps non-return-to-zero (NRZ)

pseudo-random bit sequences (PRBS), of length 231 − 1, onto a laser tuned to the

aforementioned ITU-T channels and input through the corresponding filters. Eye

patterns, plotted in Fig. 7.3.B, were obtained from the NNoC output and show

large SNRs of 8–9.2. A bit-error-rate (BER) sensitivity test, plotted in Fig. 7.3.C,

was performed by attenuating the input signals. The magnitude of the swing of

the BER degrades only slightly, from 1.4 to 0.85 dB/decade, in moving from in-

put A to D, indicating that the four ADD filters provide equal performance when

using reasonable input powers. The degradation of the BER swing can be further

mitigated by using filters with steeper transition bands.

7.4 Channel equalization

The VOA section of the NNoC is present because it is not uncommon for

channel-to-channel power variations to occur in the network (cf. original power

levels in Fig. 7.2.C). The full channel spectrum can then be equalized, line-by-line,

via appropriate attenuation at the input/VOA stage. A micrograph of one of the

VOAs is shown in Fig. 7.4.A. The VOA is formed by adiabatically transitioning

from a fully etched strip waveguide to a ridge waveguide. A 150-nm-thick slab ta-

pers in over a 25-µm length. Either side of the slab is doped n+ or p+ thus forming

an electronic p-i-n diode. The optical mode propagates though the ∼2-µm-wide

i -layer / depletion region of the diode with nominally zero additional loss. Under

forward bias, electrons (holes) are injected into the depletion region from the cath-

ode (anode) thus increasing the optical loss through free-carrier absorption [32].

The VOA cross-section is diagramed in Fig. 7.5.

A representative electrical I-V characteristic of the VOAs, when light is

completely absent from the device, is plotted in Fig. 7.4.B. Using a theoretical
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Figure 7.3: A) Transmission spectra of the four add channels, corresponding,
from top to bottom, to inputs A–D, respectively. The spectra are vertically offset
in the plot for clarity. B) Simultaneously multiplexed 10-Gbps NRZ eye patterns,
for input Ch. 23–26, through filters D, C, B, and A, respectively. C) Bit error
rates corresponding to the signals in (B).

least-squares fit (elucidated in the following section), the ideality factor n, reverse-

bias saturation current I0, and parasitic series resistance Rs of the diode were

extracted from the measured data, as listed in Fig. 7.4.B. The value of n = 2.06,

which is very close to the theoretical value of 2.0, indicates that the current is dom-

inated by electron-hole recombination in the depletion region [127]. The contact

resistance to individual contact pads was also determined to be 3.8 Ω; therefore,

Rs occurs primarily because of the pad contact resistance indicating a very low

contact resistance between the silicon and metal layers.

When light is passed through the VOA, the optical signal experiences an

exponential decrease as a forward current is injected, as seen in Fig. 7.4.C, with

an attenuation efficiency of 0.13 dB/mA. To exemplify the use of multiple VOAs

for channel equalization, we concurrently inserted ITU-T channels 55–58, into the

ADD inputs, with varying line-to-line powers. The grey trace in Fig. 7.4.D shows
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ideality factor n and saturation current I0 indicate an electrically well-functioning
device. The extracted series resistance Rs is close to the measured contact resis-
tance indicating low intrinsic parasitics. C) Optical attenuation as a function of
injected forward current; measurement (markers) and a fitted line. Optical power
is exponentially decreased by current injection up to sizable currents exceeding
∼100 mA. D) An example of spectral equalization using the VOAs. The grey
spectrum is the original multiplexed output of the ADD section. The orange spec-
trum is obtained by forward biasing the VOAs that correspond to the first, second,
and fourth channels.
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Figure 7.5: Cross-section of the VOA; h = 230 nm, w = 400 nm, t = 150 nm,
d = 1 µm.

the spectrum at the output port. This spectrum is undesirable for network opera-

tion if consistent powers are needed among the channels. However, by individually

biasing each of the VOAs at the inputs, the output spectrum can be equalized,

as shown in the orange trace. Since replicates of the chip are to be used at each

network node, the entire network can be equalized by the foregoing method.

7.5 Extraction of VOA’s diode parameters

In the preceding section, the diode ideality factor n, reverse-bias saturation

current I0, and parasitic series resistance Rs were extracted from the measured

dark I-V curve of the VOA in Fig. 7.4.B. Following a similar method [128], the

p-i-n diode that constitutes the VOA can be modeled as an ideal diode in series

with a parasitic resistor, as diagramed in Fig. 7.6. In the diagram, V is the applied

bias and I is the measured current; these are the parameters that are plotted in

Fig. 7.4.B. We may directly write down the Shockley equation:

I = I0

(
exp

(
eVD
nkT

)
− 1

)
≈ I0 exp

eVD
nkT

≈ I0 exp
e (V − IRs)

nkT
,

(7.1)

where e is the elementary charge, k is Boltzmann’s constant, T is the tempera-

ture, and the potential VD across the diode (i.e. across the depletion region in the

physical device) is not equal to the applied bias because of the parasitic resistance

(e.g. voltage drops may occur over the quasi-neutral regions of the physical diode
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or over contact regions). Differentiating the foregoing yields

I
dV

dI
= IR +

kT

e
n. (7.2)

Therefore, making a plot I dV
dI

vs. I and fitting a line to the linear portion yields

two of the desired parameters: the slope of the fitted line is precisely Rs and

the intercept to the ordinate is proportional to n. For the data corresponding

to Fig. 7.4.B, we use the region between 2–40 mA yielding Rs = 7.97 Ω and

n = 1.74. Note that this value of n is only an estimate, which will be improved

upon in the following, because the electrical region in which series resistance is

easily extractable (i.e. the linear region of I dV
dI

vs. I) corresponds to relatively

large cases of carrier/current injection where the diode is no longer operating in

an “ideal” sense.

The saturation current I0, as well as a more accurate n, may be determined

by first rewriting the last line of (7.1):

ln I =
e

nkT
VD + ln I0. (7.3)

Since Rs is now known, and I and V are experimental parameters, a plot can be

made of ln I vs. VD. Similar to before, a line is to be fitted to the linear portion;

n is calculated from the slope and I0 from the ordinate intercept. Care should

be taken to make sure that the fitted region does not include values of VD that

are too small, otherwise the approximation that led to the foregoing equation may

be invalid. For the data corresponding to Fig. 7.4.B, we use the region between

300–500 mV yielding I0 = 73.5 pA and n = 2.06. The theoretical I-V curve,

making use of the first line of (7.1) along with the extracted parameters, is plotted

atop the experimental data in Fig. 7.4.B showing a good fit between the model

and experiment.

7.6 Summary

The architecture of the reported NNoC achieves the needed functionality of

a MORDIA network node on a small footprint while providing for easy tuning ad-
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Figure 7.6: Equivalent circuit used to model a diode having a parasitic series
resistance. The applied bias V is equal to VD only if the parasitics are negligible.

justments to compensate for fabrication imperfections and to allow for network re-

configurations. The electronic tunability of the primary ADD and DROP functions

allows replicates of the NNoC to be distributed to varying nodes, which contain

different host channel wavelengths. This tuning functionality may also stabilize

the chip’s operation under ambient temperature fluctuations. The electronically

controlled VOAs allow for full network equalization. After a simple calibration

procedure, all the required tuning voltages and currents can be programmed via a

look-up table for quick access. In summary, we have demonstrated the feasibility

and usefulness of introducing an on-chip silicon-photonic network node into data

center architectures to replace most of the conventional, off-the-shelf, rack-mounted

network hardware.

Chapter 7, in part, contains material, to be submitted for publication as

the following, of which the dissertation author was the primary investigator:

R. Aguinaldo, H. Grant, A. Forencich, A. Lentine, C. DeRose, D. Trotter, A. Pom-

erene, A. Starbuck, Y. Fainman, G. Papen, G. Porter, and S. Mookherjea, “A

silicon photonic network node-on-a-chip for optically interconnected data-center

networks,” in-preparation (2014).
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