
UC Irvine
Structure and Dynamics

Title
Understanding Ancient Societies: A New Approach Using Agent-Based Holistic Modeling

Permalink
https://escholarship.org/uc/item/33w3s07r

Journal
Structure and Dynamics, 1(2)

Authors
Christiansen, John H.
Altaweel, Mark R

Publication Date
2005

DOI
10.5070/SD912003271

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33w3s07r
https://escholarship.org
http://www.cdlib.org/

1.0 Introduction

Scholarly interpretations of archaeological evidence from any given period are
traditionally based upon static approaches that look at a fairly limited number of factors
affecting social change. Reliance on such approaches is understandable given the
temporally fragmented nature of data from the past. Regardless of whether or not
researchers use excavation materials, textual sources, survey results, or other sources of
data to interpret past social behaviors, these techniques can only give a limited picture of
how societies may have functioned in a given period. However, understanding the root
mechanisms that create the social trajectories and outcomes that scholars of the past
interpret requires a more sophisticated analysis that looks at the structural factors and
dynamic processes that shape a society in any given period. Over the past few decades,
researchers have been increasingly investigating the interactions of social processes (e.g.,
economic exchange, marriage patterns, agricultural practices) and natural processes (e.g.,
hydrology, climate, human disease), or what can be termed socioecological interactions,
in great part due to the works and influence of Braudel (1980), Butzer (1982) and others.
Given this need to address socioecological interactions, along with growing
computational power over the past few decades, archaeologists and anthropologists have
incorporated computer modeling and simulation in analytical techniques that attempt to
explain how observed social phenomena may have emerged (Reynolds 1986; Lansing
1991; Doran et al. 1994; Kohler et al. 2000).

In addition, it is clear that those who study the past have varied interests and
theoretical perceptions that may require a simulation or modeling approach that entails
examination of diverse, concurrent processes across a range of scales and levels of detail.
Valid questions within this range might, for example, relate to the aggregate social
development of large regions over multi-generational time spans down to details of
participation of individuals in household activities, over a span of days or weeks, for
specific settlements. Given such diverse scales and varied theoretical perspectives, it is a
significant technological challenge to be able to faithfully represent important
simultaneous processes and their interactions at different social, spatial, and temporal
scales using computational approaches. In response to this challenge, social scientists at
the University of Chicago and the University of Edinburgh, along with researchers at the
Argonne National Laboratory’s Decision and Information Sciences Division, have
embarked upon a project that seeks to develop a new simulation software framework to
model key socioecological processes and process interactions for Bronze Age (3000-1200
B.C.) settlement systems and societies, for both the northern rain-fed and southern
irrigated regions of Mesopotamia. We have named our new simulation system
“ENKIMDU,” after the ancient Sumerian god of agriculture and irrigation. An overview
of the ENKIMDU system’s design philosophy, capabilities and limitations, and range of
applicability is presented below, along with a brief discussion of some of the underlying
advanced simulation technologies that have made ENKIMDU’s development feasible.

Although the intended primary audience of this paper is anthropologists and
archaeologists, our discussion will attempt to explain how the underlying technological
architecture of ENKIMDU, and particularly the software infrastructure provided by

Argonne’s general-purpose simulation frameworks, facilitates its use as a tool for
simulating complex social and natural systems. For scholars comfortable with the Java
computer language, computer code examples of some of the principal elements of the
simulation system are provided in an appendix. The language in the main text, however,
will be kept as free of computer science jargon as possible without sacrificing meaning.

2.0 Overview of the Simulation System

 In many respects, ENKIMDU reposes upon well-established software engineering
design precedents and upon advances made in prior groundbreaking social simulation
studies (e.g., Kohler and Van West 1996; Epstein and Axtell 1996; Kohler et al. 2000).
From a computer science perspective, our general approach can be categorized as both
“object-oriented” and “agent-based.” It is also a “process-oriented” example of a
“discrete event simulation.” It can be classified both as a simulation and as a simulation
software “framework.” ENKMDU is implemented entirely in standard Java. The key
simulation software system attributes and characteristics implied by this categorization
can be briefly summarized as follows:

2.1 ENKIMDU as an Object-oriented Simulation

 The use of software “objects” to partition and simplify computer program data
structures and information flows dates back several decades, to the SIMULA software
language (Dahl and Nygaard, 1966). Under current “object-oriented” software
development practice (e.g., Wirfs-Brock et al. 1990), as applied to a simulation, the
specific region, epoch, etc., to be studied, or “problem domain,” is decomposed, or
subdivided, into objects representing the principal elements that comprise the domain.
Information describing the domain in space and time is then assigned to attributes of
these “domain objects.” The resulting logical structure is known as a “domain object
model.” A domain object model for a simulation of a settlement system and the landscape
in which it is situated might include objects representing such elements as villages,
dwellings, persons, households, fauna, vegetation cover, soil layers, water bodies, etc.
Each object maintains information on its current state, and regulates access to its state
variables. In fully object-oriented simulation systems such as ENKIMDU, the domain
objects are also responsible for expressing their own dynamic behaviors; for
socioecological simulations these behaviors may include such potentially complex
functions as formulating and implementing adaptive responses to external stimuli.

2.2 ENKIMDU as an Agent-based Simulation

 An “agent” in a simulation is an entity characterized by autonomous behavior,
usually performed with reference to local rules, and in response to local conditions.
Working definitions of agent-based models (ABMs) diverge substantially past that point.
By the most liberal definition, virtually any fully object-oriented simulation (see above)
could be considered an ABM, with the domain objects in the roles of agents. Thus, for
example, if an object representing a soil layer for a segment of a simulated landscape
were to implement the behavior of evolving its own state variables (e.g., vertical moisture

profile, compaction, etc.) forward in time using its own behavior formulation (perhaps
using its own “embedded” hydrology and erosion models), and with reference to local
weather, vegetation cover, etc., it could be considered an agent. Our simulation system is
rich in examples of this sort of non-social “agent-like” behavior. In the context of social
simulations (e.g., Epstein and Axtell 1996), however, it is customary to restrict the
definition of agent further. Here, cognitive agents, or social agents, in a simulation are
typically used to represent individual persons or organizations. They are imbued with the
ability to form and respond to perceptions, and adapt to, and possibly learn from,
changing local environmental conditions and social stimuli. In common with most prior
agent-based social simulations, our cognitive social agents exhibit “bounded rational”
behavior (Simon 1957), in which agents make decisions and take actions that are at best
locally optimal, informed by incomplete and imperfect perceptions.

2.3 ENKIMDU as a Process-oriented Discrete Event Simulation

 ENKIMDU employs the software mechanism of time-ordered discrete events, or
messages, to initiate, regulate, and track dynamic processes, to carry communications
between agents, and to notify agents and other domain entities of significant
environmental occurrences. Since these events can be specified to occur at any simulation
time, rather than having to occur only at uniformly spaced time steps, the progress of
each of the various modeled dynamic processes can be tracked at whatever temporal
resolution is best suited to it. This is a very important consideration for highly
heterogeneous simulation domains such as those addressed by ENKIMDU, in which
diverse social and environmental processes typically proceed at very different rates.

 Simulations that make use of discrete events are generally classifiable as either
“event-driven” or “process-oriented.” In “event-driven” simulations, event messages
passed among entities convey contextual information on some occurrence of interest to a
receiving entity, and specify what action the receiving entity should take in response. In
contrast, process-oriented discrete event simulation systems such as ENKIMDU use
events to convey contextual information among agents and other domain entities, but do
not attempt to prescribe the actions that the receiving entities should take; that is up to the
agents themselves, in keeping with the spirit of agent-based, object-oriented software
design.

2.4 ENKIMDU as Computer Simulation and as Simulation Framework

 The ENKIMDU system in its present prototype configuration is capable of
performing detailed socioecological simulations of relatively simple agricultural/pastoral
settlements in ancient Mesopotamia. It has been “tuned” to this particular problem
domain in order to address our specific research questions about the development and
sustainability of ancient Mesopotamian society. In addition to addressing this specific
simulation domain, ENKIMDU can serve as a foundation for building new simulation
systems that address other complex domains.

 ENKIMDU was designed, in accordance with standard best practices for object-
oriented software development, to exploit commonalities in domain data structures and
processes. Also, as will be discussed in detail later in this paper, ENKIMDU has been
constructed using common components and design patterns from two general-purpose
object-oriented simulation frameworks developed at Argonne. The idiosyncrasies of
ancient Mesopotamian society and of the natural and anthropogenic landscapes of the
ancient Near East are dealt with in the ENKIMDU design as modulations upon relatively
stable, common design themes. These design themes are expressed via ENKIMDU’s
high-level object schema: a structured collection of formal domain object definitions for
major classes of societal and environmental entity. In light of the flexibility afforded by
this design approach, we see a role for ENKIMDU as a foundation upon which other
diverse socioecological simulations can be built. We have already taken the first steps in
that direction, via a pilot study in which ENKIMDU is being extended to address fine-
scale agroeconomic sustainability issues for villages in modern Thailand.

2.5 Enabling Technologies for ENKIMDU Framework Development

ENKIMDU software system development has been supported by two advanced
modeling and simulation technologies developed at Argonne National Laboratory. This
system’s basic software structure has been implemented with the help of Argonne’s
Dynamic Information Architecture System (DIAS; Christiansen 2000a). DIAS is a
generic object-oriented Java computer simulation framework that makes it feasible to
build and run complex simulation scenarios that involve thousands of heterogeneous
domain objects interacting via scores of concurrent dynamic processes.

The FACET framework (Christiansen 2000b) is an object-oriented Java software

toolkit for constructing agent-based, object-oriented models of simple to highly complex
societal processes. We have used FACET to construct models of persistent social
behavior patterns for individuals and organizations that operate within the social and
environmental context of larger DIAS-based holistic simulations. Several detailed
examples of application of both DIAS and FACET capabilities in the construction of the
ENKIMDU simulation system are provided later in this paper.

2.6 Distinguishing Characteristics of the ENKIMDU Framework

As the preceding discussion mentions, the ENKIMDU framework shares some
fundamental structural characteristics with several other simulation software systems.
ENKIMDU tends to differ from most agent-based simulation systems that have been used
to date in socioecological modeling investigations in its more extensive employment of,
and support for, simulation of close coupling of heterogeneous dynamic processes.
ENKIMDU also garners advantages in flexibility, scalability, and ease of code re-use, as
a direct consequence of its DIAS underpinnings.

Under the domain object-centric simulation paradigm supported by DIAS, and in
accordance with a basic tenet of the object paradigm, the objects that represent the
problem domain are responsible for expressing their own dynamic behaviors which they
accomplish by invoking appropriate simulation models. These simulation models, which

can include proven, existing models and/or new, purpose-built codes, are not embedded
directly in the software objects but are instead linked to their “owner” objects at run-time,
for execution by the owners as they are needed, based on simulation context. Under
DIAS, each model is formally defined as being able to implement a specific abstract
behavior called out in the definition of a class of domain object. When the abstract
behavior is invoked by the object, the model that is dynamically linked to the behavior
will be triggered to run. Thus, various alternative model formulations, perhaps
embodying different hypotheses or different levels of detail, can be invoked “painlessly,”
without changing simulation source code, at run-time, a key advantage in flexibility and
ease of use as a research tool.

 Each model in a DIAS-based simulation converses with the simulation in the
language of the relevant domain object attributes; a model may interact only with its
owner object and with the objects that its owner object “knows;” models never need to
interact directly with other models. This approach pays major dividends in simulation
scalability as more and more process models are added to a simulation framework, since
there is no need to maintain an exponentially growing set of model-to-model linkages and
data protocols as models are added. Each new model need only know about the limited
subset of domain objects that it can affect, and/or those objects from which it draws its
inputs.

 ENKIMDU carries explicit, fine-scale representations of the dynamics of several
key natural processes, operating concurrently with, and interacting with, fine-scale
dynamics of the social processes carried out by the social agents. ENKIMDU simulations
do employ social agents, but these agents operate within a “decision space” that includes
a substantial fine-scale environmental component in addition to the obligatory societal
component, thus providing an especially rich context for formulating and expressing
agent behaviors. By the same token, while ENKIMDU simulations encompass key
entities and dynamic processes pertaining to natural landscapes, these simulated
landscapes are also subject to perturbations, deliberate or otherwise, due to the fine-scale
modeled activities of the individual social agents. This balanced approach has allowed us
to make good use of some of the key features of the DIAS framework for modeling fine-
scale interactions and feedbacks between heterogeneous processes. The subsets of
domain object attributes used as model inputs and outputs may easily overlap from model
to model. Interactions and feedback loops involving multiple concurrent dynamic
processes therefore ensue implicitly, wherever such overlaps occur, and need not be
explicitly called out in the simulation design.

3.0 Constructing the ENKIMDU Dynamic Domain Object Model

3.1 Software Object Representation of the Problem Domain

 Our modeling representation of the domain of interest is composed of (a) objects
representing the components, both concrete and abstract, of the real-world domain, and
(b) simulation models that implement the dynamic behaviors of these domain objects.
The discussion that follows will first identify and describe some of the key classes of

object in the modeling domain, and then move on to discuss the object behaviors and the
simulation models that have been built or adapted to implement them.

 The ENKIMDU system prototype as it currently stands contains formal Java class
definitions for over 300 Java language object classes specific to ENKIMDU, in addition
to the hundreds of DIAS and FACET infrastructure library software objects supporting
the simulation. These object classes represent essentially all of the software objects that
comprise specific components of the real-world domain – ancient Mesopotamian society
and its infrastructure, embedded in its natural environment – that we are attempting to
simulate. This collection of domain objects represents both concrete instances (e.g., fields
and plow teams) and abstractions (e.g., perceptions and strategies).

 A partial, simplified view of our domain object decomposition is provided in
Figure 1, which focuses on the natural, or environmental, component of the domain, and
Figure 2, which deals with the societal component. These figures use the formalism of
Unified Modeling Language (UML) static structure diagrams to show interrelationships
among objects.

Figure 1. Simplified partial schema for ENKIMDU natural systems objects.

 The components of the natural landscape are portrayed in Figure 1 as included by
reference in a single Earth object. The term, “inclusion by reference,” here signifies that
an object, or an instance of an object class, carries a reference, or pointer, to another
object, so that it can, for example, send messages to that object. As Figure 1 indicates,

any instances of the Earth object class, there will only be one in this specific case, will
carry references, or pointers, to other objects representing the Earth’s atmosphere and
hydrosphere, as well as references to a recursive hierarchy of Landscape objects
representing major spatial “compartments” on the Earth’s surface. Landscapes can be
further subdivided into Landscape Partition objects which represent fairly homogeneous
landscape mosaic “patches” with characteristic vegetation and soil types. Figure 1
includes one example of object inheritance. The Field object class is a subclass of the
Landscape Partition class. This means that all instances of the class, Field, automatically
“inherit” all of the attributes of the Landscape Partition class. Field objects carry
additional attributes, that is information associated with tillage, land tenure, etc., that are
not found in Landscape Partitions. The “N-ary,” or “many-to-many” type of object
association identified in Figure 1 simply refers to cases where instances of a particular
type of object may carry references to several instances of another class of object, such as
a Landscape having references to any and all Landscape Partitions that lie within its
geospatial boundaries.

Figure 2. Simplified partial schema for ENKIMDU societal systems objects.

 Figure 2 illustrates some of the key object components of the ENKIMDU societal
systems representation. In the present ENKIMDU design, both Organizations and
individual Persons implement the Agent interface, which means that they are capable of
carrying out a range of behaviors reserved for social agents. These include such activities
as adaptively responding to stress and to opportunity, participating in reciprocal

exchanges with other agents, etc. Several specialized subclasses of Organization are
defined to deal with cooperative behaviors at various scales (e.g., household vs.
community vs. state) and in various modes. Each Person object carries a reference to a
Population object instance, which represents a population, or micro-population, that has a
distinctive set of social mores represented within a Society object and particular settings
for population dynamics parameters such as birth and death rates that are represented
within a Demographics object. Figure 2 also calls out the multiple overlapping social
networks based on kinship, reciprocity, coercion, community, etc., that link the
ENKIMDU social agents.

 The structure of the object representation of the ancient Mesopotamian subject
domain having been sketched out, we now turn to specification of the dynamic processes
by which these objects affect each other and evolve over time.

3.2 Adding Dynamics to the Domain Object Model

 As noted earlier, the DIAS infrastructure has provided the development team with
a means of ensuring that the ENKIMDU simulation platform will remain flexible,
manageable, and extendable as it grows in scale, scope, and depth over the course of its
useful lifetime. The mechanisms responsible for this advantage are as follows:

• Abstraction of domain object behaviors. DIAS Entity objects declare their
behaviors abstractly. Linkage of these abstract behaviors to appropriate modeling
functionality is a context-dependent, run-time activity. Specific domain object
classes can use this DIAS feature simply by declaring themselves to be subclasses
of DIAS Entity, so that they can inherit the Entity class attributes and capabilities.

• Encapsulation and formalization of model functionality. DIAS interface objects

formally define and isolate models and other applications that implement domain
object behaviors, and map them to specific domain object behavior aspects. In a
DIAS-based simulation, models may communicate only with domain objects, and
never directly with each other. This has the effect of reducing the number and
complexity of model linkages needed and improves code reusability.

DIAS Entity-based domain objects, such as Household and Landscape objects in the
ENKIMDU prototype, carry a collection of “Aspect” objects that abstractly represent the
specific behaviors for the subclass. If a particular aspect of a domain object’s behavior is
needed in a given simulation context, a DIAS “Process” object standing as proxy for a
specific model implementation is linked at run time to that Aspect to allow the domain
object to exhibit the behavior. This indirect, flexible, context-driven linkage is illustrated
in Figure 3.

Figure 3. DIAS architecture for dynamically linking models to domain objects.

 The DIAS Process objects carry formal definitions of the capabilities and
limitations of specific, actual model implementations that are available to the simulation
framework. DIAS Process specifications identify which object behaviors, as represented
by the abstract Aspect objects, the application is qualified to implement. Each DIAS
Process also carries a formal specification of the input and output data dictionaries of the
application it represents, along with a link to the actual application code itself wherever it
resides in a distributed network. Each actual model or other application is accessed by its
DIAS Process object via a “Model Controller” object, which acts as an object wrapper for
the model, hiding model internal details from the rest of the simulation system. Model
Controllers are responsible for translating DIAS object state variables into model-specific
input terms and for translating model-specific output back into the form of updates to
DIAS object attributes. This Entity – Aspect – Process – Model (or E-A-P-M) approach
greatly facilitates plug-and-play flexibility for context-sensitive specification of
alternative model formulations that address the same domain object behaviors but in
different ways.

 Figure 4 presents a simplified schematic representation of many of the classes of
software object that make up our ancient Mesopotamian simulation domain, linked to a
suite of simulation model components that have been assembled to provide dynamic
behavior. The major classes of domain entity (Field, Household, etc.) are shown as the
large blocks occupying the center of the figure. Modeled dynamic behaviors of these
simulation entities are called out in the bulleted lists within each entity block. These
entity behaviors are implemented by the ensemble of simulation models depicted as
shadowed blocks at the left and right margins of the figure.

Figure 4. Simplified view of ENKIMDU domain objects and simulation models.

 The simulations for the Tell Beydar settlement simulation studies described later
in this paper address natural processes (weather, crop growth, hydrology, soil evolution,
population dynamics, etc.) and societal processes (farming and herding practices,
kinship-driven behaviors, trade, etc.) interacting daily across simulation runs that span
decades to centuries. Software objects representing the key components of the simulation
domain are resolved and modeled at the level of individual persons and households,
individual agricultural fields and individual herd animals. Each of the decision-making
“agents” in the simulation domain – each person, household, or other organization –
governs its own behavior in the simulations based on its own local rules and in response
to its own perceptions, preferences, capabilities, and goals.

 Figure 4 illustrates in very broad terms the linkages between ENKIMDU domain
objects and simulation models that the DIAS framework supports. One of the nuances
that such a high-level figure cannot adequately portray is the ability of an abstract
behavior aspect of a domain object to be served by any of a set of alternative models that
all address the abstract behavior but in different ways. A more detailed example may help
to make this point clearer. Consider the natural (physiological) behavior of milk
production, or lactation, for the animals in a flock or herd. One simple natural behavioral
model for lactation can allow a Fauna object representing, say, a ewe, to lactate a fixed
daily quantity of milk for a period of time after the birth of its lamb. However, a more
complex lactation model could look at such factors as sheep diet, body mass, and overall
health to determine the quantity of lactation each day. In both models, the outcome of the
lactation process (say, milk produced today, in kilograms) would be a parameter that can
be defined in the object. Figure 5 highlights this example with two different lactation

models being implemented by a Fauna object. Both models can be declared in
ENKIMDU, but the specific model that is chosen in a given situation will be the one that
is most appropriate for a given simulation context, as specified by the user in defining the
context for a simulation. Here, the process object acts as the interface between the
domain entity and model objects, processing both the entity input data that drives the
model and output data produced by the model. Ultimately, it is the output produced by
the model that evolves the parameter states of the entity object.

Figure 5. Example of alternative processes and models to address the same abstract
aspect of behavior.

For complex real-world problem domains, the effects of various heterogeneous

dynamic processes may manifest themselves in the domain at widely varying temporal
scales and granularities. For example, “slow” processes, such as deterioration of a textiles
in a warehouse or grain in a granary, may need to check in with the simulation only every
month or so, to update the condition of the stored commodities, and possibly to
recompute rates of deterioration based on slow changes in environmental conditions in
the storage facilities. But “fast” processes, such as reciprocal exchange among agents at a
local market, must update daily or even more frequently, since each market transaction
can be completed relatively quickly and each transaction can substantially change an
agent’s subsequent trading behavior.

The DIAS software infrastructure provides explicit support to allow entities to

express their dynamic behaviors at the native temporal scale and tempo appropriate to
each such behavior. First, since DIAS is a discrete event simulator, events delineating the

tempo of change for each process can be arbitrarily spaced in time, and can even be
spaced or bunched in time at irregular intervals if appropriate; there is no “native”
simulation time step that forces process representations into tempos that may not suit
them. A second, more subtle but more powerful means of support for temporal
heterogeneity is provided by the DIAS “process trigger” mechanism. Each DIAS Process,
representing a dynamic behavior of a type of simulation entity, can specify the
preconditions that must be met in order for it to launch a model to express that behavior.
These preconditions can include requirements that certain entity state variables of the
owning entity, or of any other entities that are declared to be of interest to the owning
entity in the context of this behavior, have timestamps indicating a specified degree of
“freshness.” Thus, for example, a social model of daily irrigation practices might require
freshly updated channel water levels and flow rates before it can launch. If these updates
are in fact to be provided by a surface hydrology model, then the hydrology model is
implicitly constrained to update before the irrigation practices model can run. Note that in
this situation there is absolutely no need for either of the models to have any knowledge
of the other one, because each model’s needs are always expressed purely in terms of
domain object attributes. This mechanism makes it possible for differently paced
heterogeneous processes to automatically cue each other to run in an appropriate
temporal sequence, without any need for the researcher to specify or script such a
sequence. This inherent ability to allow diverse process representations to self-organize to
properly regulate the flow of information in DIAS-based simulations such as ENKIMDU
has proven to be extremely valuable. It has meant that we are spared the chore of adding
escalating volumes of procedural control code to our simulation engines whenever
simulation complexity increases.

An Appendix has been included to show brief examples of the entity-aspect-

process-model paradigm. The actual linkages between the agents and models can be
inserted at run and build time. Appendix A.1 shows one technique that links the agent
with a behavioral model in the instantiation of a simulation scenario, while other
examples (Appendix A.2 and A.3) indicate what the entity, aspect, and process objects
contain. An example model that is linked with the entity-aspect-process sequence is
described in Appendix A.4, and will be discussed shortly.

In order to help facilitate simulation of interactions among different social agents,

Argonne has augmented DIAS with a social simulation toolkit called FACET: the
Framework for Addressing Cooperative Extended Transactions (Christiansen 2000b).
FACET can be used to construct simulation models of transient or persistent social
behavior patterns in which individuals and organizations interact over time. These
patterns can be drawn from a variety of societal settings. For example, for various
simulation applications we have built at Argonne, we have used FACET behavior pattern
models to represent business practices, government and corporate policies, military
doctrine and operating practices and tactics, and, as in the ENKIMDU examples we will
present momentarily, complex, persistent pursuit of agricultural and pastoral practices by
ancient Northern Mesopotamian households.

FACET is presently implemented as a separate Java package within the DIAS
project; many of the main FACET modeling software objects are implemented as
subclasses of high-level DIAS simulation infrastructure objects. Thus, for example,
FACET models are implemented using the same DIAS Model and Process objects
described earlier, and are each invoked by launching a behavior Aspect of a DIAS Entity
object, just like any other DIAS model. FACET models that we have built to date have all
been internal models, not requiring a Model Controller software wrapper, though they
could be built as distributed, external models if that mode of interaction were needed. The
FACET package could in principle be adapted to be used without DIAS; it would need an
alternative discrete event posting and distribution facility, and surrogates for a few object
superclasses presently provide by DIAS to be usable in stand-alone mode or from within
other simulation software environments.

FACET-built models of social processes tend to behave quite a bit differently

than, say, models of natural processes such as weather, subsurface water flow, etc., which
may be following very highly repetitive patterns in evaluating continuous, smoothly
varying differential equations for conservation of mass, etc. Social processes, both in
real-world situations and as modeled via FACET, tend to exhibit different patterned
behaviors: proceeding at different timescales, interruptible and redirectable by a host of
exogenous influences, and often requiring some degree of cooperation and coordination
among multiple simulation entities such as persons and organizations. FACET models
capture complex societal interactions via a mutable directed graph of course-of-action
steps, which are essentially behavioral sub-models. Each of these steps must generally
occur in a specified locale, and require a finite amount of time, during which the
participating agents are partially or fully preoccupied with the action in the step and are
thus unavailable for other activities. FACET action steps typically require resources of
one or more of the participants, and result in changes to the states of some of the
participants, and, in the agricultural examples we will be discussing shortly, in changes to
elements of the natural environment as well. Step participants, or agents, and their
resources can be carried over from step to step, or can be different in various steps,
depending on the nature of the social process being modeled. Specific agents fill roles
that are called out in an abstractly in the step definition. For example, in some of our
detailed health care simulations (Christiansen 2000b), different persons fill the roles of
Patient, Nurse, Receptionist, Physician, and so on in FACET models of outpatient visits;
the same person might take on the role of Physician in one model and Patient in another.
The modeled social patterns thus present a series of templates, with slots for abstract
participants filling the various specific roles called for in each action step.

 In order for Agent objects to take active roles in FACET societal models, they

must first implement Java interfaces that give each of them access to their own instances
of the FACET Participant and ResourceManager object classes, to which the agents can
then delegate much of the reasoning and ancillary processing regarding participation in
social activities. For example, through the Participant delegate object, an agent can
consult an agenda of requests that have been made for it to join various activities and
make specified resources available in various capacities (i.e., roles), so the agent can
prioritize the unsatisfied requests on its agenda and make appropriate responses. If an

invited participant is unwilling to join in an action step, or unable to do so because some
of the requested resources are not available, then the step will be delayed until the
requisite level of cooperation is achieved. Timeout intervals can be specified so that
planned activities can be cancelled if the needed participants and resources are not
forthcoming; alternative behavior pathways can be specified in the FACET model to deal
with such occurrences, as well as for any number of other exogenous events that might
preempt, cancel or redirect a planned sequence of social activities. Appendix A.4 shows a
code example of FACET model implementation for ENKIMDU. In order to simplify the
example, the creation of only one of the model’s action step is shown.

An example of the complex behavioral mechanisms that have been implemented

using FACET models is provided by the collection of agricultural practice for dry-
cropping of grain in the rain-fed northern region of Mesopotamia modeled in the
ENKIMDU simulation system (Christiansen and Altaweel 2006). Figure 4 shows the
directed graph of action steps for two ENKIMDU FACET agricultural practice models,
the Field Crop Management Model and Dispose Harvest Model. Within ENKIMDU, a
separate instance of the Field Crop Management Model is launched for each agricultural
field being tended by each household in the current simulation year. Similarly, a separate
instance of the Dispose Harvest Model is launched, for each household that has been
tending grain crops in the current simulation year, as soon as its first grain sheaves are
brought home to its threshing floor.

Throughout the time period covered by these two models, roughly nine months

from September through May, each agricultural field must be maintained, through
execution of the sequence of agricultural activities depicted in the model’s steps, by
human agents in order to produce a crop. These agents apply their own labor, employ
their own assets, such as ard plows, along with other assets such as plow teams borrowed
from the community in a cooperative arrangement, and expend their own consumables
(e.g., seed), in the modeled steps. At the same time, ongoing environmental processes
such as plant phenology, percolation of soil moisture, and daily weather fluctuations
affect the state parameters of both field and crop. The current states of both field and crop
are known to the tending household when its members visit the field; this knowledge is
essential in the farmers’ ability to synchronize their activities with the crop’s own internal
timetable. For example, the ENKIMDU crop management model incorporates the
farmer’s understanding that harvest can commence once the crop has reached a specific
phenological stage, in this case somewhat senesced and defoliated, with grain ripeness
assessed as it is in the USDA’s SWAT crop model, in terms of the accumulated fraction
of the nominal number of growing-degree days needed to ripen each variety of field crop.

We believe that it is essential to capture the interplay among field, crop, and

farmer if a settlement system’s agricultural activities are to be portrayed with any degree
of fidelity, and particularly in pre-modern times, when the pervasive occurrence of
critical bottlenecks and shortages of labor and materiel, and a farming household’s ability
to devise means to fend off such difficulties, could prove decisive in determining crop
performance, and thus the sustainability of the household. We cannot stress strongly
enough that crop performance is not a purely biological issue that can be decoupled from

the social/natural system interactions that bring the crop into being and see it through to
harvest. Even in our still relatively simple simulations, we have observed examples of
this at every turn. Farmers in our simulations who have to wait too long for their turn to
use community-managed plow teams may not get finished with that activity, and thus be
able to move on to sowing of seed, until the winter rains are nearly over, putting the crop
at a significant initial disadvantage from which it may not recover. Households that lose
key workers at critical points in the agricultural year such as harvest time, due to deaths
or simply to other unavoidable social commitments, may not get all of their harvest in
before it withers in the mercilessly hot and dry Mesopotamian summer. In such cases, the
crop weather and soil conditions may have been perfect, and the crop planted may have
been vigorous and perfectly suited to local conditions, but the crop failed because the
social component of the overall dynamic was not sufficient to the task at some critical
juncture.

The ENKIMDU agricultural models for ancient Mesopotamia explicitly reflect

Mesopotamian conditions. For instance, in both modern and ancient Mesopotamia, the
harvest season is in the early summer, requiring crops to be harvested before they wilt
under the increasing heat, lack of rain, and changing soil conditions during the harvest
action step (Buringh 1960). Other labor processes associated with the crop cycle include
threshing and storing grain, or post-harvest labor activities (Murray 2000). As noted
above, these post-harvest behaviors were represented in a separate ENKIMDU FACET
model, called the Dispose Harvest model, not directly linked to the crop model, but
invoked through the participating entities (Figure 6).

Figure 6. FACET social behavior pattern models for Mesopotamian dry farming
practices.

The Manage Herd Local Model in ENKIMDU addresses a community’s

cooperative livestock management activities, undertaken by groups of households that
keep their sheep and goats within their own household compounds overnight, but pool

their herds and flocks each day. This pooling allows the combined herds and flocks to be
efficiently taken out each day to forage pastures that are near enough to allow them to
return to the settlement before nightfall. The Manage Herd Local Model works similarly
to the previous example. However, because the relevant behavior pattern must be
repeated on a daily basis, the total timeline for performance of all of the model’s action
steps is far shorter: one day, compared to the crop models’ nine-month run. A schematic
diagram of the herding model’s daily steps is shown in Figure 7. This model was largely
based on an ethnographic study that describes a pastoral system that may have also
existed in past Mesopotamian societies (Sweet 1974). As was the case for agricultural
practices, simulated decisions regarding herding practices are dynamic and continuously
evolving as circumstances change for each day. For instance, with the advent of the
agricultural season, herds need to be moved to locations away from the cropped fields.
Factors such as field biomass and distance from the settlement determine which areas
these animals will be sent to graze by the herder agents. Livestock herds themselves can
begin to affect where they graze by their trampling, foraging, and excrement deposition
that influence plant growth on the fields they traverse and graze. The herding cooperative
social agents continuously monitor local pasturage conditions to help decide where to
forage in subsequent time. Also, because each animal in the herd is evolving its own
physiological parameters over time in the simulations, undergoing specific processes
such as gestation, lactation, etc., and responding to population dynamics (e.g. birth,
death) events (Redding 1981; Blaxter 1967), the herd’s state parameter values also
evolve. This affects the specific impacts the herd has on the pastures and other landscape
partitions that it traverses in its daily foraging activities.

Figure 7. A FACET social behavior pattern model for Mesopotamian pastoral practice.

Certainly these FACET model examples from ENKIMDU represent a fairly

limited perception of how agropastoral activities may have been practiced in ancient
Mesopotamia. Thus, it would be worthwhile to see variations of these models as well as
entirely different agropastoral models incorporated as alternatives. Using the DIAS

approach outlined earlier, such alternative formulations will generally be mapped to the
same specific domain entity types and abstract behaviors as the original models, and can
simply be selected and swapped in at runtime, so there would be no need to explicitly
account for every possible combination of model alternatives in the ENKIMDU code.

4.0 Incorporation of Landscape Dynamics and External Models

 All societies operate within landscape contexts, making it essential to incorporate
landscape environmental dynamics when investigating social mechanisms relevant for a
particular society. Furthermore, agents should in general possess the ability to sense,
experience, and reason upon evolving conditions in their own local environments over
the course of a simulation, if they are to be able to behave in a realistic manner.

 Given that the creation of highly complex natural landscape models can be a
major project in its own right, above and beyond the effort required to construct a suite of
social-behavioral models, simulation platforms that aim to address a very wide range of
natural and social processes can benefit from the capability to access relevant, capable
external modeling systems, even legacy or older models built in different computer
languages. DIAS incorporates such capabilities by building upon Java code interfaces and
adding controls that allow a platform such as ENKIMDU to communicate effectively
with other modeling and simulation software packages. For example, in ENKIMDU we
have incorporated the Soil and Water Assessment Tool (SWAT) modeling suite
developed for the United States Department of Agriculture (USDA) to study managed
natural landscape dynamics for agricultural, ecological, and pollution control purposes
(Arnold et al.1998). Many critical landscape parameters such as soil moisture and plant
phenology are evolved through processes incorporated within SWAT (Neitsch et al.
2002). Key dynamic processes that SWAT simulates include the following:

Processes Simulated by SWAT

Hydrology:
• Surface runoff, ponding
• Drainage routing at individual field to watershed scale
• Percolation, water table dynamics
• Lateral subsurface flow
• Evaporation and snowmelt,
• Soil temperature dynamics
• Precipitation recharge

Meteorology: Daily agricultural weather, from daily observations or via a Markov
Chain stochastic weather generator that is driven by data tables of climatological
means and extremes.

Soil Evolution: Water and wind erosion, deflation, etc.

Nutrient Cycling Dynamics: Nitrogen and phosphorus balance

Vegetation Growth:
• Canopy and root development
• Evapotranspiration
• Water budget
• Nutrient uptake
• Growth constraints (by moisture, temperature, nutrient levels, etc.)
• Yield, with constraints as above.
• Dormancy
• Effects of pests, effects of grazing

Human Interventions:

• Tillage effects (leveling, plowing, planting, harrowing, harvesting, etc.)
• Irrigation
• Fertilizer and pesticide application (presently no pesticide effects on

vegetation modeled in SWAT, only routing and fate of pesticide chemicals)

In DIAS terms, the SWAT model, via a DIAS Process proxy object, reports to the

simulation that it is capable of implementing the high-level “evolve landscape” aspect of
behavior called out in the definition of the ENKIMDU Landscape object class. A remote
SWAT model execution is then linked at run-time with an ENKIMDU Landscape object,
via the latter’s “evolve landscape” behavior aspect. For this SWAT execution, the SWAT
Fortran code is running on a processor separate from the processor that holds the
ENKIMDU domain object representation, including the Landscape object. A DIAS
Model Controller wrapper written in Java, with some C for direct access to SWAT’s
large internal common data block, facilitates two-way communication between SWAT
and the domain object representation. Daily updates to soil and vegetation parameters in
every partition of the landscape (including all crop fields) flows form SWAT to the
domain objects, and information on tillage operations and other agricultural and pastoral
interventions visited on each field by household work crews, herds, and flocks flow in the
opposite direction; process feedbacks are thus automatically provided for. More details
on this linkage are given below and in the Appendices.

 In ENKIMDU the social agents (households, in this case) can perceive and
respond to changes to the landscape that result from the operation of the SWAT. For
instance, while the Field Crop Management model is functioning, human agents are
concurrently able to perceive changing soil and plant properties due to the dynamic
behaviors of SWAT that evolve the agricultural field agents. As noted earlier, for
instance, households’ agricultural work crews can use observed maturity levels of a given
crop to determine proper time to begin the harvest. The maturity state of a crop not only
evolves through natural conditions, such as moisture and soil inputs, but also by
anthropogenic processes that impact SWAT’s calculations. An example of this is a crop
field that is being harrowed: this tillage operation will remix the top layer or so of soil,
changing vertical nutrient distributions, and altering subsequent plant growth trajectories.
Thus, SWAT is simply treated as another process model that evolves different parameter
states, and is able to provide feedback necessary for human agents to determine their next
social actions. In the current ENKIMDU prototype, SWAT is accessed through a DIAS

Model Controller object that communicates with it using a distributed Java RMI
interface, allowing SWAT to physically reside in a different computer connected through
a network (see Reilly and Reilly 2002 on distributed computing). Using the Java Native
Interface (JNI) provided within the Java language, ENKIMDU can then access the
variables incorporated and produced within the SWAT model (written in Fortran90).
Appendix A.5 provides example code to show how SWAT can be incorporated within
ENKIMDU using Java Remote Method Invocation (RMI) tools as well as those built by
Argonne.

 Landscape dynamics are driven to a great extent by weather and climate.
ENKIMDU can accept daily weather updates from actual observations, from numerical
weather model output or synthesized from monthly local climate summaries using a
Markov process weather generator. For some ENKIMDU studies, we have chosen to use
a weather generator called ClimGen in place of SWAT’s internal weather generator,
because it proved somewhat easier to manipulate in generating varied results (Stöckle et
al. 1999). Climate outputs produced in ClimGen can be streamed into SWAT, giving
ENKIMDU access to these data. As ENKIMDU development proceeds, and particularly
as we simulate larger geographic regions, we plan to provide the domain object model
with access to the MM5 (Anthes and Warner 1978) mesoscale weather model and/or
other comparable numerical weather models to provide fine-scale spatially varied
climates, using derived 3rd millennium BC surface cover estimates. Long-run general
circulation model (GCM) paleoclimate analyses (e.g., Joussame and Taylor 2000;
Kutzbach et al. 1996) can be used to help provide boundary conditions for the mesoscale
climate simulations. Monthly average GCM results can guide selection of representative
finer-scale climate analog datasets to provide the requisite boundary conditions for MM5.
Alternatively, if GCM paleoclimate results are available at sufficiently fine temporal
resolution, they can be used directly to drive the MM5 runs.

Regardless of the specific suite of models and behaviors incorporated within a

simulation, the ability to incorporate various modeling suites and mechanisms created by
different research and development efforts, including both physical and social behavior
representations, is essential for simulation platforms to adequately address complex
social and environmental questions. Using the DIAS framework to wield this capability
enables us to extend ENKIMDU to address the scope and range of modeling coverage for
natural and social processes without expending a lot of effort in creating new models,
when existing models may provide the functionality and domain expertise that is needed.
A major strength of a given simulation platform can, therefore, be determined by how
well it integrates external models, or models built by others, into an overall effort.

 DIAS can also be used to integrate existing software tools that can perform as

standalone applications. In our current simulation efforts, one such tool that has been
used to supply spatial display and analysis is the GeoViewer (Lurie, Sydelko, and Taxon
2002), an Argonne developed geospatial toolkit that includes typical geographic
information system (GIS) capabilities such as flexible modes of data input and spatial
statistical functions. DIAS can easily interface with this tool; several of the Argonne
object-based spatial utility libraries are used both by DIAS and by the GeoViewer. The

GeoViewer can also be linked to external models and coupled directly with other
research software frameworks comparable to ENKIMDU to perform spatial data transfer,
display and analysis tasks across variable spatial scales. Other spatial tools can be, and
have been, linked to DIAS applications. However, the commonalities between the
software architectures of DIAS and the GeoViewer make it particularly straightforward
for us to access and spatially display attributes and behaviors of entities in our simulation
domain object models. The GeoViewer tool has been coupled with ENKIMDU, and is
used to display changing values of various landscape attributes, with particular emphasis
placed upon evolving agricultural field and crop and forage properties, as well as to show
movement of agents and of fauna across the landscape. Figure 8 presents a snapshot of an
actual ENKIMDU GeoViewer animation display for a simulated Bronze Age settlement,
with field and vegetation states and minute-by-minute locations and activities of all
household work crews in the settlement.

5.0 Baseline Simulations for a Northern Mesopotamian Settlement

 Up to this point, we have discussed in general terms how ENKIMDU works,
emphasizing how it makes use of our generic DIAS and FACET simulation frameworks,
and have provided some schematic and descriptive examples of different behaviors
within the simulation framework. We would now like to briefly describe some of the
most fundamental early ENKIMDU modeling runs, our “baseline” cases, for a single
simulated northern Mesopotamian settlement. Given that other early modeling results of
our ancient Mesopotamian simulation project for various interesting stress scenarios are
beginning to appear in various other publications, we suggest that interested readers can
access these published or soon-to-be-published resources to further explore our
simulation results of fine-scale, heterogeneous social and natural system process
interactions (Christiansen and Altaweel 2006; Wilkinson et al. forthcoming). These
articles detail a great many of the specific behaviors and input aspects associated with
actual social and natural systems in Bronze Age Mesopotamia and the Near East, and
discuss how they have been represented within ENKIMDU’s dynamic domain object
model. For example, these papers identify the relevant types of households in our
simulations and describe their evolution over time in the ancient Near East, discuss
ancient textual data used to construct Bronze Age behaviors, and provide detail on the
spectrum of specific household stress coping strategies that have been modeled in the
ENKIMDU framework.

For our initial simulations of ancient Mesopotamian settlement systems, we have
chosen the landscape around Tell Beydar, an ancient settlement site located in the Khabur
Basin of northern Mesopotamia (modern northern Syria). The simulated landscape
characteristics were derived from site surveys and from satellite CORONA imagery from
the 1960s. The region consists of rolling plains and low-lying basalt plateaus. Several
wadi systems, or temporary riverbeds, can be found in the region near Tell Beydar
(Wilkinson 2000). Input data associated with the surrounding landscape is captured in
ArcGIS shapefiles and incorporated into ENKIMDU to create the data parameters for
landscape entities. Data integrated into ENKIMDU’s landscape include soil types derived

from neighboring regions near Tell Beydar (van Liere 2003). These site region
characterization data are briefly summarized in Figure 8.

Figure 8. Spatial layout of the Tell Beydar settlement simulation region. Field colors
indicate variations in vegetation cover in the settlement’s agricultural fields.

The underlying assumptions and initial conditions for our “baseline” simulations

for the synthetic settlement that we have based on the Tell Beydar site refer to “normal”
conditions that do not deviate dramatically from expected means, and do not include any
strong exogenous shocks to the coupled social/natural systems that we are modeling. For
example, modeled demographic rates are not significantly altered from what are
considered to be likely average rates of birth and death in the region during the Bronze
Age. We did not impose any major climatic events that significantly deviated from mean
values for sustained periods. However, even within a “normal” range, variability could be
substantial from year to year, as in the case of modeled local annual total precipitation
values ranging between 100 and 600 mm per year over a 100-year scenario (Christiansen
and Altaweel 2006).

 Our baseline simulations were run for 100 years of simulated time. As we have
discussed, social activities and environmental process dynamics for these runs were
represented at very fine spatial and temporal scales over these multigenerational runs. To
highlight this point, Figure 9 provides a snapshot from an ENKIMDU user interface
animation view for one of our 100-year baseline runs, showing the field and vegetation
states that are updated daily and the minute-by-minute locations and activities of all
household work crews in the settlement.

Figure 9. Snapshot from an ENKIMDU animation display, showing crop fields and
vegetation states and household agricultural and pastoral activities.

 In Figure 9, the phenological state and standing biomass density of field
vegetation are encoded using background color and colored diagonal lines respectively.
Note that the settlement’s four local cooperatively tended herds shown in Figure 9 are
foraging fallow fields chosen by their respective herding cooperatives: fields that are the
nearest ones to the settlement with sufficient biomass to sustain today’s grazing and
browsing; tomorrow the chosen forage fields may be different. Work crew activities are
indicated by color-coded icons in the figure; on the autumn day depicted, all crews other
than those of the herding cooperatives were either clearing fields or had finished clearing
and were engaged in plowing. It is illuminating to note that the households that appear to
be “behind in their work,” the ones that are clearing their fields of weeds and brush and
are not yet plowing, are working fields that tend to be quite distant from the settlement
center. Our simulated settlement is assumed to be nucleated; all its households’ dwellings
are concentrated at the center of the crop field mosaic. Thus the crews working the more
distant fields are walking further to and from their tasks, giving them less time each day
to devote to their actual field tasks, and thus putting their households under slightly
greater sustainability stress. Because of the contextual richness of the fine-scale simulated
social and environmental settings in our ENKIMDU simulations, we have found that
such nuances appear quite frequently in the modeling runs, and, furthermore that,
following the chain of subsequent events, they can in some cases have sustainability
impacts far greater than one might reasonably have expected.

Figure 10 shows the variations in settlement population and number of active

households during the 100-year baseline simulation scenario. In this figure, it can be seen

that the initial population of around 500 people grew during the first 50 years, declined,
and then appeared to stabilize near 600 toward the end of the scenario. The population
losses in the second half of the scenario can largely be explained by higher overall
emigration, with 142 emigrants in the first 50 years and 247 emigrants in the second 50
years. In the baseline runs, emigration was set up to be a household food stress coping
mechanism of last resort, when the expedients of growing grain crops, obtaining grain
gifts from kin, selling off or eating livestock, or borrowing grain at interest were unable
to keep starvation at bay. Given that agriculture was the main source of food for all
households in the simulation, a shortage of farm labor to farm, or an inability to obtain
food from other agents, particularly in the form of nonreciprocal food gifts from kin
members, could be disastrous for a household (Wilkinson et al. forthcoming).

Figure 10. Graph showing population and number of active households in the virtual
settlement for a 100-year “baseline” simulation.

 One ENKIMDU simulation output parameter that can indicate overall
community-level food stress is the net deficit measure for food requirements by members
of the settlement. This measure records food shortfalls for households that fail to obtain
sufficient food reserves at any point in a given year. The calculation converts all food
available for a household into equivalent kilograms of grain, and then subtracts kilograms
needed from kilograms available. This conversion is done because food can be obtained
from not only agricultural production, but also from livestock, hunting, dairy, and the
collection of wild plants. Converting all food quantities to equivalent grain kilograms
offers a way to standardize the overall measurement. Therefore, if a household
slaughtered a sheep, the meat produced would be converted into equivalent kilograms of
barley grain.

The deficit grain graph in Figure 11 indicates that food deficits for some
households did increase after the beginning of the simulation; however, this deficit did
not steadily increase, as one might expect for a population that has greater emigration

rates in the second 50 years of a 100-year scenario. Rather, a major factor that caused
households and people to emigrate was their loss of links in their network of kinship
connections over time. For instance, the overall number of kinship connections in the
community for Year 35 was 349 (2.4 close kin households per household), while there
were only 206 connections in Year 95 (1.5 kin close households per household). With
fewer kinship connections, even a small food crisis could cause individuals to emigrate,
since there would be fewer bilateral kin members on hand to help struggling individuals.
Therefore, greater overall community food stress as such does not have to be present in
cases of higher emigration and lower community sustainability, if there is a problem
distributing the available food among households.

Figure 11. Graph showing deficit kilograms of grain (or food converted into grain
kilograms) for the overall simulated settlement.

A factor that would certainly be expected to have an effect on the simulated
settlement’s overall sustainability is the agricultural yield of the surrounding crop fields.
Figure 12 shows the overall average barley yield for our simulated settlement, along with
the local annual mean precipitation, for the 100-year baseline scenario.

Figure 12. Overall settlement barley yield and annual mean precipitation for 100-year
baseline simulation.

Two features of the graphs in Figure 12 are worth mentioning. First, the crop

yield does seem to be positively correlated with the rainfall, after a slight temporal lag, as
might reasonably be expected. Second, there appears to be a trend towards a slow net
decline in overall yields throughout the simulation period. This cause of this apparent
trend bears further investigation. It may be significant that, although all of the households
in the settlement are scrupulously observing the traditional practice of biennial fallowing,
no supplementary fertilizer (e.g., manure) is being systematically added to the fields in
the baseline case, so nutrients may simply be being depleted by several generations of
farmers planting every other year.

Although the example above can provide useful information as to why some

individuals and households are forced to emigrate the community, a more detailed
analysis of agents is often required to fully understand social phenomena. Looking at the
results from the most fundamental agent level at any period of a simulation can help
express details that are masked by the aggregate results. Therefore, ideally, a simulation
needs to be able to report in detail the behaviors of its fundamental components, often
over small increments of time. An example illustrating ENKIMDU’s ability to provide
informative fine-scale household and person level results will be given below.

An important functional element in ENKIMDU is the ability to produce

“household diaries” that detail household and person behaviors over time. At present,
these diaries record all significant demographic (birth, deaths, marriages, etc.) and
resource-related events such as reciprocal exchanges, gifts, and loans in a given year.
Figure 13 provides an example key to explain how the diaries can be used in interpreting
various events and household/person situations.

Figure 13. Example key explaining elements of household diary output. Each household
has knowledge of its resources (e.g., grain and livestock), kinship networks, and keeps a
memory of other households it has interacted with. Person names in the simulation were
selected randomly from a list of modern names, and do not reflect ancient Mesopotamian
names.

 For this example, we begin in Year 8 of a baseline scenario similar to the
settlement level example presented earlier (Figure 14). Household 72 can be seen to have
six members in a multiple-family type household, a type common in the ancient Near
East (Bagnall and Frier 1994). Two births can be observed in Year 8, with one member of
the household marrying and moving to her new husband’s household. This patrilocal
event is an expected event for past Near Eastern societies (Schloen 2001). Looking at the
grain reserves for the household, it appears that the members did not have any problem
obtaining sufficient food, and the household was even able to provide a small grain loan
to another household in the community. In addition, Household 72 had a reasonable
number of livestock (15 sheep and goats) that could have been used for food stress relief.

Figure 14. Diary Year 8 for Household 72.

 By the next year, Billy373, his wife, and child depart Household 72 to form a new
nuclear family household (Figure 15). In this particular simulation scenario, large
households can be highly productive by having more available members for labor tasks.
Nevertheless, households with several families can also be more apt to fissure due to high
social stress between the members, as this example shows. In any case, by creating a new
household without access to many of the resources that belonged to their previous
household, Billy373’s family faced, in a relatively short period, some food stress. This
food stress was not necessarily disastrous, since the household was able to depend on
kinship bonds for one-way gift transfers. In day 235, the household did have to seek a
grain loan from a non-kin household, a behavioral option that was much less favorable
for Household 141. Certainly the household attempted to request grain gifts from its kin
members, but at the time of the food request none of the kin members were able to
provide assistance, forcing Household 141 to seek a grain loan from other community
members. This loan, nevertheless, was not overly burdensome for the household, and it
was able to repay this grain loan with interest by day 306, not too long after the harvest.

Figure 15. Diary Year 9 for Household 141.

The pattern of borrowing grain that began in Year 9 continued into the following
year (Figure 16). At the beginning of Year 10, the household was in worse shape than it
was in the beginning of Year 9 (see grain reserves), partly because it gave a portion of the
harvest away to pay the previous year’s grain loan. With the presence of kin members,
however, the household still had potential to be sustainable by receiving labor assistance
in farming tasks, a behavioral option enabled in this simulation, and grain gifts.
Ultimately, what was most disastrous was the death of Billy373. The loss of an important
labor resource reduced the ability of the household to produce sufficient crop yields, at
least without labor assistance from other households. Significant labor assistance,
however, can be financially costly and difficult to obtain in certain years. As a result,
Uma162, the young widow of Billy373, and her child were in a dire situation. Faced with
few options for household sustainability, Uma162’s situation propelled her to choose to
marry into another household, taking her child with her and ending the history of
Household 141.

Figure 16. Diary Year 10 for Household 141.

 Although these brief results are based on a virtual community in a simulation, the
processes determining the results were built using past data from the Near East. The
household and individual behaviors as well as the demographic circumstances derive
from historical examples, from the Bronze Age and other periods, indicating the realities
some past societies faced under conditions of food stress (Christiansen and Altaweel
2006; Wilkinson et al. forthcoming). The cognitive powers given to the agents allowed
them to evaluate different behavioral options before choosing what they believed to be
their best option, such as seeking a one-way gift exchange from a kin member rather than
borrowing grain from unrelated agents. What this shows is that ENKIMDU can allow
agents to perceive and respond to their simulated social and natural surroundings from
their own perspectives.

Certainly how agents make cognitive choices in past and present social systems is
debatable. This debate even extends to computer scientists who have varying approaches
in recreating systems that simulate human cognition and agency (Kauffman 1994; Plotkin
1993; Carley, Prietula, and Lin 1998). In the example presented, Billy373 made a choice
of breaking away from the common Mesopotamian practice of staying in multiple-family
households. In this case, human agency is not constrained by a given social structure
common to a particular society. As a result, Billy373 did not behave as an automaton, and

was able to make a choice that enabled non-normative results to occur, even tough some
of his other behaviors conformed to common Mesopotamian practices. For the purposes
of this paper, no particular socio-behavioral theory is strenuously argued; the examples
simply provided a way of showing that different theoretical perspectives can be
incorporated into a simulation scenario that allows archaeologists and anthropologists to
test ideas and beliefs they may have. The end results of such testing can be possible
insights into a particular theoretical framework through observation of how that
framework operates in a virtual society.

 What is significant in the DIAS-based approach described earlier is that it can
place the agents as the progenitors of all action and allows for the integration of
alternative modeling approaches, including models built by others in different computer
languages, enabling a simulation effort to be more flexible to different perspectives in
computational mechanics and theoretical application. Enabling agents to implement
context-driven behavior, but not incorporating agents directly with behavioral models,
also allows modelers to more easily scale-up agent behavior by making it possible for
greater complexity that builds on existing work related to human choice and decision
making. If Billy373 had additional and alternative behavioral models for analyzing his
situation, then he may have decided that remaining in his previous household (Household
72) would have been economically more viable for his family. Perhaps he would have
determined to resolve any conflict he had with Household 72’s members. In any case,
using the agent-aspect-process-model interaction outlined earlier, scaling-up and
implementing different behavioral models are made easier. What the household diary
example ultimately shows is that the tools for addressing highly complex human
behavior, including but not only at the fundamental agent level, are present in
ENKIMDU.

6.0 Conclusions and Future Direction

Although our simulation effort is still far from producing anything close to all of

the relevant mechanisms affecting socioecological dynamics in ancient Bronze Age
Mesopotamia, this brief overview of the ENKIMDU engine and its enabling technologies
makes it clear that researchers have the ability to create complex agent-based simulations
that can test varied theoretical approaches and address the numerous needs of researchers.
The descriptions and examples presented highlight ENKIMDU’s flexibility, scalability,
and ability to produce expressive and socially plausible modeling results. In addition,
these results can be relevant for varied social, spatial, and temporal scales.

At present only one settlement has been included in simulation scenarios;
however, as the simulation begins to broaden its spatial scales and include numerous
interacting settlements, regions, and migrant groups, it will be necessary to accurately
observe all societal levels of interaction in order to better understand social phenomena.
The ability of ENKIMDU to provide results relevant for micro- and macro-scales of
society makes it a useful tool for testing social theory across these scales.

 In addition, a well-constructed simulation structure insures that as new
information, increased complexity, and different theoretical perspectives are applied, the
chassis should still be able to function and provide useful insights into social-natural
dynamics and emergent behavior at the desired scale. The structure of DIAS enables the
simultaneous inclusion of alternative and multiple types of data and behavioral models.
Furthermore, the units of time that can be simulated and capture behavior range from
minutes and seconds to hundreds of years, allowing ENKIMDU to be temporally
adaptable and applicable for different studies of past societies. Spatial variability can also
be observed in ENKIMDU. For instance, agricultural yields for one specific field or the
entire territory surrounding a settlement can be observed at any point of a simulation run.
In the near future, we hope to further expand the spatial qualities of ENKIMDU to
include large regional dynamics. In addition, GIS data encapsulated in common formats
(e.g. ArcGIS shapefiles) can be incorporated into the DIAS-based simulation, making
ENKIMDU well able to utilize existing spatial data.

Overall, the benefits of the enabling technologies used in ENKIMDU show that it

is possible for scholars with varied interests and perspectives to find efficacy in creating
socioecological simulations. This development helps social theorists move closer to the
goal of producing platforms that are applicable for virtually every type of study regarding
social dynamics in past human-environmental systems, perhaps even creating a unified
approach in testing archaeological and anthropological theory. The intent of this paper is
not to claim such grandiose achievements; however, it is our desire that social scientists
interested in the past try to see relevance in the simulation approach we have taken in
helping to achieve an effective system for testing theory. These benefits, we hope, can
help others develop and build upon approaches that enable more significant progress in
producing useful insights for various past ancient societies.

Acknowledgements and Further Information
This paper was made possible by the “Modeling Bronze Age Settlement Systems in a
Dynamic Environment” project, a collaborative effort of the Oriental Institute and
Department of Anthropology at the University of Chicago, the University of Edinburgh,
and Argonne National Laboratory. We are particularly grateful to the National Science
Foundation Program: Dynamics of Coupled Natural and Human Systems (Grant No.
0216548), for providing major funding for this project. Earlier exploratory work was
funded by the University of Chicago/Argonne National Laboratory Collaborative Grants
Program in 1998 and 1999 as well as by the University of Chicago, Advanced
Technology Initiative in 2000. Further information regarding ENKIMDU can be obtained
at: http://oi.uchicago.edu/OI/PROJ/MASS/Mass.htm. For information and questions
about obtaining licenses for DIAS, access to specific ENKIMDU code and results, and
other software tools mentioned in this paper please contact John Christiansen at
jhc@anl.gov or Mark Altaweel at maltaweel@anl.gov.

Biographies
John Christiansen, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL,
USA 60439, jhc@anl.gov. John Christiansen is Deputy Director of the Advanced
Simulation Technologies Center at Argonne National Laboratory. Mr. Christiansen’s

research over the past decade has focused on the development of flexible simulation
frameworks that can be used to build very large, multidisciplinary complex adaptive
system simulations, in applications that cover a wide range of domains and disciplines,
including the natural and social sciences as well as health care and logistics. He is the
creator of the ENKIMDU simulation engine and inventor of the DIAS and FACET
modeling frameworks that support it.

Mark Altaweel, Argonne National Laboratory/University of Chicago, 9700 S. Cass
Avenue, Argonne, IL, USA 60439, maltaweel@anl.gov. Dr. Altaweel received his Ph.D.
at the University of Chicago in Near Eastern Archaeology, with a specialty in
Mesopotamian archaeology. Currently, he is a scientist at Argonne assisting in the
development of ENKIMDU and creating other social science modeling toolkits and
applications relevant for modern and ancient societies. In addition to working at Argonne,
Dr. Altaweel is leading a research projected related to ancient settlement development in
northern Mesopotamia. His research interests include remote sensing and GIS
applications in archaeology.

Appendix A: Examples of the Entity-Aspect-Process-Model Paradigm
and Incorporation of an External Model

In the examples given below, all the methods do not have all their variables and method
calls included. Rather, only the key portions of these methods are given to show the main
concepts emphasized in the article. Readers are encouraged to contact Mark Altaweel
(maltaweel@anl.gov) or John Christiansen (jhc@anl.gov) for further detail on the
specific functionalities provided by DIAS and other technologies discussed.

A.1. Linking of an Entity with its Aspect, Process, and Model

Entities can be linked with behavioral models at various stages of the simulation,
although often this link is created in the initialization stage. In the getModelsForRegion
method, a HouseholdFieldManager entity is linked to the model called
FieldCropManagmentModel. This method calls a DIAS method, called
addProcessToModelCategoryMap, that takes the entity, aspect, process, and model
classes and links them together. A Map instance is created and returns the connections for
the simulation.

public java.util.Map getModelsForRegion(anl.dias.simulation.RegionDefinition region)
{

Map categories = new HashMap();

 addProcessToModelCategoryMap(categories, //map of models
 "Evolution", //string category
 "FieldCropManagementModel", //model name
 HouseholdFieldManager.class, //entity class
 "fieldCropManagement", //aspect in entity
 FieldCropManagementProcess.class, //process class used

 FieldCropManagementModel.class); //model class to be called

 return categories; //categories map of entity-aspect-process-model returned
}

A.2 The Entity Object and its Parameters and Aspect

Appendix 1.1 shows how the connections for the entity-aspect-process-model are made;
however, all of these objects are instantiated at an earlier stage. The example below
shows the entity object mentioned in Appendix A.1. The static call registers this subclass
with the superclass Entity. The other static methods create the actual aspects and
parameters used for this entity. The method initializeMetaParameters creates a household
and field parameters, while the initializeMetaAspects creates the aspect that has a string
value that matches the aspect keyword in Appendix A.1. This aspect string allows the
model and process classes to be linked to the entity class. The aspect string can also be
used to reference alternative models.

public class HouseholdFieldManager extends Entity
{

//this registers the object
 static
 {
 initializeEntityMetaData(HouseholdFieldManager.class);
 }

//initialize the parameters
public static void initializeMetaParameters()
 {
 //the class to be called
 Class cls= HouseholdFieldManager.class;

 //the parameters for this class are initialized below
 addMetaParameter(cls, "household"); // reference to a dwelling
 addMetaParameter(cls, "field");
 }

//initialize the aspect
public static void initializeMetaAspects()
 {
 Class cls= HouseholdFieldManager.class;

addMetaAspect(cls, "fieldCropManagement", "Routine agricultural tasks for a Crop
Field");

 }
}

A.3 The Creation of a Process Object

In this example, the process class extends the superclass CourseOfActionProcess, used
for FACET type models. The static block registers the subclass, while the
buildProcessInputData and initializeOutputParameters allow the mapping between the
entity’s variable parameters and associated model. The buildProcessInputData creates a
Map instance that will store the involved variables referenced by the parameter values of
the objects involved in the model. In this case, the process can be used to launch a model
at any time, while other types of processes can be used to launch models when parameter
variables are at the appropriate state for the model to function. The string value in the
unpackageProcessOutputData method references the entity object to its specific
parameter value that evolves as a result of the behavior. Each process object instance has
to be associated with a specific model instance. Not all involved objects and parameters
are shown in this example.

public class FieldCropManagementProcess extends CourseOfActionProcess
{

 protected Object buildProcessInputData()
 {

 // Process input data map in FACET models is as follows:
 // All contents of the map are available in the
 // participants to each Step.
 // Also in that map are (a) Step thisStep, and
 // (b) TimeInterval thisStepDuration. In addition,
 // for Action Steps, the participants are there.

 Map data= new HashMap(); //data inputs
 HouseholdFieldManager hfm= (HouseholdFieldManager)getEntity();
 Household h= (Household)hfm.getValue("household");
 data.put("household", h); //puts the entity into the data map

 HouseholdOperations hops=
 (HouseholdOperations)h.getValue("operations");

 PendingCrop pc= hops.takePendingField();

 Field f= pc.getField();
 data.put("field", f);

 data.put("crop", pc);

 return data;
 }

//method to process output data from the actual model
 protected void unpackageProcessOutputData(Object data)
 {

 Field field =(Field)((Map)data).get("field");

 //links the output for this process back to
 //the parameterized entity

 connectOutputParameter(“cultivationState”,field);

}
}

A.4 FACET Model FieldCropManagementModel

In this FACET model, the constructor of the object is used to define the model steps.
Local variables and their initial values used in the model can be defined in the
constructor. The ResourcePackage class is used to hold the resources of the entities
involved in the interaction. The rest of this constructor method creates action steps and
participants in those steps (only one step shown in the example). The strings in the
ActionStepTemplate object identify the name of the step, the timeout of the step, the next
step after this step, and the duration of the step. Each of these strings reference methods
that will be used specifically in the model. For example, the duration of the step can be
determined by available resources of an entity that is calculated in the model. The next
portion of the code refers to the participants and resource manager (i.e., the household)
reserved for the step. Finally, the step is added to the overall model, and it is indicated
this step is the first in the model. Similar to the other examples, comments are given in
the constructor to facilitate interpretation of the methods called.

public FieldCropManagementModel()
 {
 super();

 addLocalVariable("field", null); //variable’s initial value

 //resources to be used in this model
 ResourcePackage rp= new ResourcePackage();
 RangedRequirement rr= new RangedRequirement(RangedRequirement.MIN,
 "HeavyLaborer", 1);

 rp.getResources().put("HeavyLaborer", rr);

 //general exceptions in model are created here

 ExceptionStepTemplate generalTimeout= new ExceptionStepTemplate(
 "GeneralTimeoutProcessing", this,
 "nextStepAfterStepTimeoutGeneral", "stepTimeoutGeneral");

 ActionStepTemplate action; //the step object
 StepParticipantTemplate spt; // the participant in step

 // Step 1: Clear and level the field
 action= new ActionStepTemplate("ClearAndLevel", this, //title and object model
 "nextStepAfterClearAndLevel", //next step after this step will be declared
 "clearAndLevel", //name of the step that will be called
 "clearAndLevelTimeout", //timeout method
 "clearAndLevelDuration"); //method that will determine duration of step

 spt= new StepParticipantTemplate("workCrew", //the participant in the step
 "WorkCrew", new Integer(1), //role type and attention number

 new Requestee("household"), //the manager of the resources used
true, false); //true refers to dismiss participants after step, false indicates only

//one resource object is used in the step

 action.addParticipant(spt); //participant in step is added

 //this call below adds an exception to the model
 action.addPreemptiveEventHandler("COAStepTimeout", generalTimeout);

 addStep(action); //step is then added to the model

 setEntryStep("ClearAndLevel"); //this sets the first step in the model
}

A.5 External Model Incorporation

This main method is run to initialize the remote external model, which is the SWAT
model in this case. When the SWATModelControllerImpl is instantiated, DIAS methods
will be called to initialize and register the model. For more on RMI see Reilly and Reilly
(2002). The second method, the executeForTime method, resides in an object that wraps
and calls the remote model to execute.

public static void main(String[] args)
{

// this will load properties from the specified property files
 PropertiesUtils.loadProperties();

SWATModelControllerImpl mc;
 initializeLogging(); //start logger object that will register messages from SWAT

 // An RMI registry is created/started so that the Remote external model can
 // register with it. The model will be looked up by ENKIMDU when it is
 // run.

//the port used for RMI
int port = Integer.parseInt(System.getProperty("rmiregistry.port"));

 RMIUtilities.startRMIRegistry(port);

 //instantiate the external model control

try {
 mc = new SWATModelControllerImpl(true); //true = remote model

 } catch (RemoteException e1) {
 e1.printStackTrace();
 }
}

//this method calls the execution of the external model within an object model that wraps
//the external model

public void executeForTime(RMIModelState modelState) {
 try {

Object output =
((SWATModelController)modelState.getModelController()).executeForTime((S
WATStepData)modelState.getInputData());

 modelState.setOutputData(output);

 } catch (RemoteException e) {

 e.printStackTrace();
 }
 }

References

Anthes, RA, and Warner TT, Development of Hydrodynamic Models Suitable for Air

Pollution and Other Mesometeorological Studies. Monthly Weather Review. 1978;
106:1045-1078.

Arnold JG, Srinivasin R, Muttiah RS, and Williams JR, Large area hydrologic modeling

and assessment. Part I: Model development. Journal of the American Water
Resources Association. 1998; 34(1):73-89.

Bagnall RS, and Frier BW, The Demography of Roman Egypt, Cambridge: Cambridge

University Press; 1994.

Blaxter KL, The Energy Metabolism of Ruminants, London: Garland Publishing; 1967

Braudel F, On History, Chicago: University of Chicago Press; 1980.

Buringh P, Soils and Soil Conditions in Iraq, Baghdad: Ministry of Agriculture; 1960.

Butzer KW, Archaeology as Human Ecology, Cambridge: Cambridge University Press;

1982.

Carley KM, Prietula MJ, and Lin Z, Design versus cognition: The interaction of agent

cognition and organizational design on organizational performance. Journal of
Artificial Societies and Social Simulation. 1998; 1(3)

 http://ideas.repec.org/a/jas/jasssj/1998-7-1.html.

Christiansen JH, A flexible object-based software framework for modeling complex

systems with interacting natural and societal processes. Proceedings of the 4th
International Conference on Integrating GIS and Environmental Modeling, Banff,
Alberta, Canada, Sept. 2-8; 2000a.
http://www.colorado.edu/research/cires/banff/pubpapers/

— FACET: A simulation software framework for modeling complex societal processes

and interactions. Proceedings of the 2000 Summer Computer Simulation
Conference of the Society for Computer Simulation International, Vancouver,
British Columbia, Canada, July 16-20; 2000b.
http://www.scs.org/confernc/scsc/scsc00/text/scsc2000_author_kit.html

Christiansen JH, and Altaweel M, Simulation of natural and social process interactions:

An example from Bronze Age Mesopotamia. Social Science Computer Review.
2006; 24(2):209-226.

Dahl O-J, and Nygaard K, SIMULA: an ALGOL-based simulation language.

Communications of the ACM. 1966; 9(9):671-678.

Doran JM, Palmer M, Gilbert N, and Mellars P, The EOS project: Modeling Upper

Paleolithic social change. In Gilbert N and Doran J, eds. Simulating Societies: The
Computer Simulation of Social Phenomena, London: UCL Press; 1994:195-221.

Epstein J, and Axtell R, Growing Artificial Societies: Social Science from the Bottom Up,

Cambridge: MIT Press; 1996.

Joussaume S, and Taylor K, The Paleoclimate Modeling Intercomparison Project. In

Braconnot P, ed. Proceedings of the Third PMIP Workshop, Canada, 4-8 October
1999, WCRP-111, WMO/TD-1007; 2000: 271.

Kauffman SA, The Origins of Order: Self Organization and Selection in Evolution,

Oxford: Oxford University Press; 1993.

Kohler TA., Kresl J, West CV, Carr E, and Wilshusen R, Be there then: A modeling

approach to settlement determinants and spatial efficiency among late ancestral
Pueblo populations of the Mesa Verde region, U. S. Southwest. In Kohler TA and
Gumerman GJ, eds. Dynamics in Human and Primate Societies: Agent-Based
Modeling of Social and Spatial Processes, New York: Oxford University Press;
2000:145-178.

Kohler TA, and West CV, The calculus of self interest in the development of

cooperation: Sociopolitical development and risk among the northern Anasazi. In
Tainter JA and Tainter BB, eds. Evolving Complexity and Environment: Risk in
the Prehistoric Southwest, Reading, MA: Addison-Wesley; 1996:169-96.

Kutzbach JP, Behling P, and Selin R, CCM1 General Circulation Model Output Data

Set. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution
Series # 96-027, NOAA/NGDC Paleoclimatology Program, Boulder, Colorado;
1996.

Lansing JS, Priests and Programmers: Technologies of Power in the Engineered

Landscape of Bali, Princeton, NJ: Princeton University Press; 1991.

van Liere W, Survey of Soil, Present Land Use and Land Capabilities of the Jezireh,

London: UCL Press; 2003.

Lurie GR, Sydelko PJ, and Taxon TN, An object-oriented geographic information system

toolkit for web-based and dynamic decision analysis applications. Journal of
geographic information and decision analysis. 2002; 6(2):108-116.

Murray MA, Cereal production and processing. In: Nicholson PT and Shaw I, eds.

Ancient Egyptian Materials and Technology. Cambridge: Cambridge University
Press; 2000:505-536.

Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, and Williams JR, Soil Water Assessment

Tool User’s Manual, Temple, TX: Texas Water Resource Institute; 2002.

Plotkin H, The Nature of Knowledge: Concerning Adaptations, Instinct and the Evolution

of Intelligence, London: Penguin Press; 1994.

Redding RW, Decision making in subsistence herding of sheep and goats in the Middle

East, Ann Arbor, MI: PhD dissertation, University of Michigan; 1981.

Reilly M, and Reilly D, Java™ Network Programming and Distributed Computing,

Reading, MA: Addison-Wesley Professional; 2002.

Reynolds RG, An adaptive computer model for the evolution of plant collecting and early
 agriculture in the Eastern Valley of Oaxaca. In Flannery KV, ed. Guila Naquitz:

 Archaic Foraging and Early Agriculture in the Oaxaca, Mexico, New York:
 Academic Press; 1986:439–500.

Schloen D, The House of the Father as Fact and Symbol: Patrimonialism in Ugarit and

the Ancient Near East, Winona Lake, IN: Eisenbrauns; 2001.

Stöckle CO, Cambell GS, and Nelson R, ClimGen Manual, Pullman, WS: Washington

State University; 1999.

Simon HA, Models of Man: Social and Rational, New York, Wiley; 1957.

Sweet L, Tell Toqan, a Syrian Village, Ann Arbor, MI: University of Michigan Press;
 1974.

Wilkinson TJ. Archaeological survey of the Tell Beydar Region, Syria 1997. In

Lerberghe KV and Voet G, eds. Tell Beydar Environmental and Technical
Studies, Subartu 6. Turnhout: Brepols; 2000:1-37.

Wilkinson TJ, Gibson M, Christiansen JH, Widell M, Schloen D, Kouchoukos N,

Altaweel M, Ur J, and Hritz C. Modeling settlement systems in a dynamic
environment: Case studies from Mesopotamia. In Kohler TA and Leeuw SD, eds.
Modeling Socioecological Systems, Santa Fe, NM: SAR Press; forthcoming
(2007).

Wirfs-Brock R, Wilkerson B, and Wiener L, Designing Object-oriented Software,

Englewood Cliffs, NJ: Prentice Hall; 1990.

	1.0 Introduction
	2.0 Overview of the Simulation System
	2.6 Distinguishing Characteristics of the ENKIMDU Framework

	3.0 Constructing the ENKIMDU Dynamic Domain Object Model

	4.0 Incorporation of Landscape Dynamics and External Models
	6.0 Conclusions and Future Direction
	Acknowledgements and Further Information

	Reilly M, and Reilly D, Java™ Network Programming and Distri

