- Main
Coordinated parallelizing compiler optimizations and high-level synthesis
Abstract
We present a high-level synthesis methodology that applies a coordinated set of coarse-grain and fine-grain parallelizing transformations. The transformations are applied both during a presynthesis phase and during scheduling, with the objective of optimizing the results of synthesis and reducing the impact of control flow constructs on the quality of results. We first apply a set of source level presynthesis transformations that include common sub-expression elimination (CSE), copy propagation, dead code elimination and loop-invariant code motion, along with more coarse-level code restructuring transformations such as loop unrolling. We then explore scheduling techniques that use a set of aggressive speculative code motions to maximally parallelize the design by re-ordering, speculating and sometimes even duplicating operations in the design. In particular, we present a new technique called "Dynamic CSE" that dynamically coordinates CSE and code motions such as speculation and conditional speculation during scheduling. We implemented our parallelizing high-level synthesis in the SPARK framework. This framework takes a behavioral description in ANSI-C as input and generates synthesizable register-transfer level VHDL. Our results from computationally expensive portions of three moderately complex design targets, namely, MPEG-1, MPEG-2 and the GIMP image processing too], validate the utility of our approach to the behavioral synthesis of designs with complex control flows.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-