Skip to main content
eScholarship
Open Access Publications from the University of California

An unusual mitochondrial import pathway for the precursor to yeast cytochrome c oxidase subunit Va.

  • Author(s): Miller, BR
  • Cumsky, MG
  • et al.
Abstract

We have studied the import of the precursor to yeast cytochrome c oxidase subunit Va, a protein of the mitochondrial inner membrane. Like the majority of mitochondrial precursor proteins studied thus far, import of presubunit Va was dependent upon both a membrane potential (delta psi) and the hydrolysis of ATP. However, the levels of ATP necessary for the import of presubunit Va were significantly lower than those required for the import of a different mitochondrial precursor protein, the beta subunit of the F1-ATPase. The rate of import of presubunit Va was found to be unaffected by temperature over the range 0 to 30 degrees C, and was not facilitated by prior denaturation of the protein. These results, in conjunction with those of an earlier study demonstrating that presubunit Va could be efficiently targeted to mitochondria with minimal presequences, suggest that the subunit Va precursor normally exists in a loosely folded conformation. Presubunit Va could also be imported into mitochondria that had been pretreated with high concentrations of trypsin or proteinase K (1 mg/ml and 200 micrograms/ml, respectively). Furthermore, the rate of import into trypsin-treated mitochondria, at both 0 and 30 degrees C, was identical to that observed with the untreated organelles. Thus, import of presubunit Va is not dependent upon the function of a protease-sensitive surface receptor. When taken together, the results of this study suggest that presubunit Va follows an unusual import pathway. While this pathway uses several well-established translocation steps, in its entirety it is distinct from either the receptor-independent pathway used by apocytochrome c, or the more general pathway used by a majority of mitochondrial precursor proteins.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View