Skip to main content
eScholarship
Open Access Publications from the University of California

Controlled Assembly of Heterobinuclear Sites on Mesoporous Silica: Visible Light Charge-Transfer Units with Selectable Redox Properties

  • Author(s): Han, Hongxian
  • et al.
Abstract

Mild synthetic methods are demonstrated for the selective assembly of oxo-bridged heterobinuclear units of the type TiOCrIII, TiOCoII, and TiOCeIII on mesoporous silica support MCM-41. One method takes advantage of the higher acidity and, hence, higher reactivity of titanol compared to silanol OH groups towards CeIII or CoII precursor. The procedure avoids the customary use of strong base. The controlled assembly of the TiOCr system exploits the selective redox reactivity of one metal towards another (TiIII precursor reacting with anchored CrVI centers). The observed selectivity for linking a metal precursor to an already anchored partner versus formation of isolated centers ranges from a factor of six (TiOCe) to complete (TiOCr, TiOCo). Evidence for oxo bridges and determination of the coordination environment of each metal centers is based on K-edge EXAFS (TiOCr), L-edge absorption spectroscopy (Ce), and XANES measurements (Co, Cr). EPR, optical, FT-Raman and FT-IR spectroscopy furnish additional details on oxidation state and coordination environment of donor and acceptor metal centers. In the case of TiOCr, the integrity of the anchored group upon calcination (350 oC) and cycling of the Cr oxidation state is demonstrated. The binuclear units possess metal-to-metal charge-transfer transitions that absorb deep in the visible region. The flexible synthetic method for assembling the units opens up the use of visible light charge transfer pumps featuring donor or acceptor metals with selectable redox potential.

Main Content
Current View